
From editor

This issue presents proceedings of the workshop “30 Years of Mizar”1 held in September
18, 2004 in Białowieża (Poland). The workshop was devoted to celebrate 30 years of Mizar. It
was affiliated to the Third International Conference on Mathematical Knowledge Management.
The workshop was organized by University of Białystok and Białystok Technical University.

The papers were selected for presentation at workshop (with two exemptions) and publi-
cation in the journal by workshop’s program committee which consists of the following:

– Grzegorz Bancerek (Chair), Bialystok Technical University, Poland,
– Czesław Byliński, University of Bialystok, Poland,
– Adam Grabowski, University of Bialystok, Poland,
– Roman Matuszewski, University of Bialystok, Poland,
– Yatsuka Nakamura, Shinshu University, Nagano, Japan,
– Piotr Rudnicki, University of Alberta, Edmonton, Canada,
– Yasunari Shidama, Shinshu University, Nagano, Japan,
– Christoph Schwarzweller, University of Gdansk, Poland,
– Freek Wiedijk, Radboud University Nijmegen, The Netherlands.

The first exception concerns the paper of Paul Cairns which was submitted to the parallel work-
shop “Mathematical User-Interfaces” and was presented at shared session of both workshops
as being of common interest. The second exception concerns the invited talk by Yasunari Shi-
dama.

At the workshop there were also presented three talks which are not published in this
issue:

– Mizar in Secondary Schools by Anna Rybak,
– Towards a Mizar Mathematical Library in OMDoc Format by Michael Kohlhase,
– Mizar project wishlist by Josef Urban.2

Grzegorz Bancerek

1 Workshop’s web page may be found at http://merak.pb.bialystok.pl/mkm2004/
2 The wishlist may be found at http://wiki.mizar.org/cgi-bin/twiki/view/Mizar/
MizarWishlist
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The MIZAR project is opus magnum of Andrzej Trybulec.

Abstract – We present the story of the MIZAR project with focus on the years until 1989. A lot about
MIZAR after 1989 is available at the web3.

1. Introduction

In 1967 Andrzej4 started working at the Płock Branch of Warsaw University of Technology
in Płock (100 km North-West of Warsaw). It is here that we met Andrzej for the first time when
we entered the university: the first author in 1969 and the second in 1968. Andrzej was our math
teacher of calculus for engineers.

We remember Andrzej from these early days from the Informatics Club (in Polish: Koło
Naukowe ETO) that he ran for several years. The Club met quite frequently to discuss widely
understood issues of informatics. In those years, it seemed like everyone wanted to design their
own programming environment and needless to say Andrzej was planning to have his own, too.
This project was short lived yet something remains of it: its name—MIZAR— which, to the best of
our memory, appeared in late 1972. According to Andrzej, it was his wife Zinaida who picked the
name. She was looking through an astronomical atlas when Andrzej asked her for a good name
for a project and she suggested MIZAR, the name of a star in the familiar Big Bear constellation.

2. 1973-74: the very beginnings

Andrzej was finishing his PhD in topology at the time and apparently the final stages
of this effort provided a strong motivation for his envisaging a computerized assistance in the
process of editing mathematical papers. During September-October of 1973, Andrzej was vis-
iting Institute of Scientific and Technical Information (VINITI) in Moscow where he discussed
his ideas. The first presentation of the MIZAR ideology— ideology understood here as visionary
speculation—was presented by Andrzej on November 14, 1973 at a seminar in the Institute of
Library Science and Scientific Information at Warsaw University. During the seminar Andrzej
postulated a language for recording mathematical papers such that:

– the papers could be stored in a computer and later, at least partially, translated into natural
languages,

– the papers would be formal and concise,

? Partially supported by NSERC grant OGP9207.
3 http://mizar.org
4 When we write Andrzej, we mean Dr. Trybulec.

Manuscript received August 5, 2004; revised September 9, 2004

3



4 ROMAN MATUSZEWSKI AND PIOTR RUDNICKI

– it would form a basis for the construction of an automated information system for mathemat-
ics,

– it would facilitate detection of errors, verification of references, elimination of repeated theo-
rems, etc.

– it would open a way to machine assisted education of the art of proving theorems,
– it would enable automated generation of input into typesetting systems.

It is worth stressing that in this initial stage, the question of proof-checking has barely been
mentioned; the main stress was placed on editorial work. Andrzej initiated a group effort of
translating, into the yet non-existing language, a paper by H. Patkowska, A homotopy extension
theorem for fundamental sequences, Fund. Math. 64 (1969), pp. 87-89. In the long term, this
strategy proved to be the best way to arrive at a practical language for formalizing mathematics.

The first experiments with implementing a version of MIZAR for propositional logic started
in the Fall of 1974 by Andrzej, Krzysztof Łebkowski and Roman Matuszewski on the Polish
made machine ODRA-1204 in Algol 1204. Since the grammar of MIZAR was quite unstable, a
universal syntax analyzer was implemented, with a rather atrocious running time of generated
parsers.

3. 1975: MIZAR-PC

The above mentioned experiments continued through 1975. In June 1975, we obtained
some financing from Płock Scientific Society.5

In June 1975, Andrzej circulated a short write-up entitled Logic-information language
MIZAR. It was the first written document with clearly stated MIZAR ideology—see above—and
some details of the implementation which was in progress at that time. Andrzej presented his
ideas at IX. Kolloquium über Information und Dokumentation, November 12–14, 1975, in Ilme-
nau, East Germany, which resulted in the first MIZAR publication [9]. At that time even these
ideas were surrounded by an aura of science-fiction, although it was soon discovered that these
ideas were by no means new, one can find them in a short 1962 paper by Kaluzhnin [2], which
was brought to Andrzej’s attention around 1975–76.

A preliminary version of a report on MIZAR-PC (PC for propositional calculus) was pre-
sented to the Society in November 1975. The report included a description of a language for
recording proofs in classical propositional calculus in the Jaśkowski style of natural deduction.
Actually, it was only a few years later that we learned about the Jaśkowski style of natural
deduction, however it was the way the proofs had been written in the tradition of the Polish
mathematical school. Here is a text from the 1975 report:

begin
((p ⊃ q) ∧ (q ⊃ r)) ⊃ (p ⊃ r)
proof

let A: (p ⊃ q) ∧ (q ⊃ r) ;
then B: p ⊃ q ;

C: q ⊃ r by A ;
let p ;
then q by B ;
hence r by C

end
end

5 In Polish: Towarzystwo Naukowe Płockie. This society is one of the oldest regional societies of this type in Poland,
established in 1820, see http://www.tnp.plocman.pl.
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Please note that this is a true picture of the texts written in MIZAR-PC: the teletype used
for the input to the machine we used provided all the characters displayed above and also made
underlining possible, which was the tradition for writing down keywords in implementation of
Algol that we used.

MIZAR-PC texts started with begin and were terminated by end, although these two
keywords also played other roles. Besides checking syntax the implemented analyzer of MIZAR-
PC was also checking correctness of proofs (proof ... end) and inference steps (... by ...).

Checking the correctness of proofs consisted of checking the equality of the sentence to
be proved and what was the contents of a proof. The contents of a proof is a sentence extracted
from assumptions (let ...) and conclusions (thus ... or hence ...) occurring in the proof. A
proof could have a number of assumptions and conclusions. In constructing the contents of
a proof, an implication was placed after an assumption and a conjunction after a conclusion
(except the last one).

MIZAR-PC offered a construct called a compound statement bracketed by symbols begin
... end between which all constructs allowed in a proof could be placed. The contents of a com-
pound statement consisted of a sentence constructed in the same way as in the contents of a
proof. A compound statement could be labeled and a reference to the label meant a reference to
its contents. Loosely speaking, a compound statement was like a proof without explicitly stating
what was being proved.

The process of checking of inference steps was based on a fixed set of rules of inference
(some five hundred of them). An inference rule was a scheme of acceptable inference and could
have up to two premises, each with at most one binary connective and a conclusion, also with
at most one binary connective. No more than three propositional variables were permitted in an
inference rule. An accepted inference step had to be an instance of exactly one of the allowed
rules of inference. This approach was abandoned in the next MIZAR version.

MIZAR-PC introduced linkage, a mechanism for making reference to the previous sen-
tence without using a label. The keyword then served this end. hence, one of the keywords
marking a conclusion, has meaning equivalent to thus then which was not permitted.

It is worth mentioning that MIZAR-PC foresaw references to a data base, although this
feature was not implemented until 1989.

The implementation of MIZAR-PC was on a Polish computer ODRA 1204 with 12k of 24
bit words and a drum of 192k such words, in Algol 1204. The input medium was paper tape
or a teletype. The members of the team implementing MIZAR-PC: Roman Matuszewski, Piotr
Rudnicki and Andrzej Trybulec.

During 1975–76, MIZAR-PC was used in teaching propositional logic at the Płock Branch
of Warsaw University of Technology (Roman Matuszewski) and at the Institute of Library Science
and Scientific Information at Warsaw University (Andrzej Trybulec).

4. 1977: MIZAR-QC/1204 and MIZAR-QC/6000

The next natural step in developing MIZAR was to furnish the language with quantifiers.
The work continued over 1976 when Andrzej moved from Płock to Białystok and started working
at the Białystok Branch of Warsaw University, where he has been working until now. Since 1997
this school has been known as University of Białystok.

Despite lack of financing, the work continued on extending MIZAR-PC towards quantifier
calculus. Under Andrzej’s supervision some longer texts were written and used in guiding the
development of the system:
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1. Jan Borawski, in his MSc thesis, June 1977, formalized a paper by J. Krasinkiewicz On
homeomorphism of the Sierpiński curve, Commentationes Mathematice XII, 1969, pp. 255–
257.

2. Chinese remainder theorem from [1], by Cz. Żukiewicz.

In 1977, Andrzej secured some financing for MIZAR through a research grant of the Min-
istry of Science and Higher Education, administered in our case by the Institute of Computer
Science6, Polish Academy of Sciences.

In late August 1977, the implementation of MIZAR-QC was completed in Pascal on a CDC
6000 by: Andrzej Jankowski7, Roman Matuszewski, Piotr Rudnicki, Andrzej Trybulec.

The language of MIZAR-PC was extended with quantifiers to form MIZAR-QC. However,
the language was still quite simplistic, not much more than quantifiers and their processing in
proofs was added; here is a sample text

BEGIN
((EX X ST (FOR Y HOLDS P2[X,Y])) > (FOR X HOLDS (EX Y ST P2[Y,X])))

PROOF
ASSUME THAT A: (EX X ST (FOR Y HOLDS P2[X,Y]));
LET X BE ANYTHING;
CONSIDER Z SUCH THAT C: (FOR Y HOLDS P2[Z,Y]) BY A;
SET Y = Z;
THUS D: P2[Y,X] BY C;

END
END

The universal and existential quantifiers were written as

FOR <variable list> HOLDS<sentence>
EX <variable list> ST <sentence>

respectively8 .
A fixed set of predicates was chosen for testing the language processor

CONTRADICTION, P, Q, R, P1, Q1, R1, P2, Q2, R2, P3, Q3, R3,

where the first four were nullary, while the arity of the remaining ones was indicated by the digit
following the letter.

Variables and constants were assumed to denote objects from a fixed non-empty set. The
only terms allowed were simple terms built of a variable or a constant.

Three syntactic constructs provided the means for introducing quantifiers when computing
the contents of a proof. These constructs played a double role: 1) they affected the computation
of the contents of a proof and 2) they also introduced objects used in the rest of the proof.

– The <let statement>

LET<variable list> BE <specification>

6 Within the research program MR.I.3 we worked on the topic 02.5.1 “Logic-information language MIZAR-QC”. This
source of funding was supporting MIZAR until 1983.

7 A logician who reduced his role to convincing us that MIZAR cannot be built.
8 While everybody agrees that EX stood for there exists, there is no consensus whether ST comes from such that

or satisfying.
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introduced fixed but arbitrary objects to be used in the rest of the proof. The only permit-
ted specification was ANYTHING and had to be stated as Andrzej did not like the look of
just LET X; (which started to occur frequently in future MIZARs once the reservation of
variables was introduced).
This statement contributed a universal quantifier to the contents of a proof with bound vari-
ables from the <variable list> and its scope was computed from the remaining proof ele-
ments.

– The <consider statement> had two syntactic variants

CONSIDER<variable list> or
CONSIDER<variable list> SUCH<conditions> <justification>

This was the MIZAR construct for recording existential elimination, i.e. the way of using
existentially quantified sentences. Since the variables denoted objects from a non-empty
set, the first variant of the statement was safe.
As a proof element, this statement introduced existential quantifiers into the contents of a
proof, and thus played the role existential introduction.

– The <set statement>

SET<variable list> = <argument>

introduced a named object (or several of them) and equated them to its argument. This
statement also played the role of existential introduction in computing contents of proofs.

In MIZAR-PC, let was used to indicate an assumption. Since LET was now used in a
new role, the new keyword ASSUME was introduced to indicate an assumption. It was possible
to assume several labeled sentences joined by AND.

The justification procedure, previously called the inference checker, had been completely
redesigned. A justification had a general shape of

β BY d1, . . . ,dn

where the designator di identified the label of a sentence αi. The justification was perceived as
correct if the following sentence

(α1 ⊃ . . . (αn ⊃ β) . . .)

was accepted by a justification procedure. The justification procedure was based on a set of
rewrite-like rules and was implemented as such. Before any rewrite rules were applied, all sen-
tences were transformed into a standard form with negation, conjunction and universal quanti-
fier as the only connectives. In the standard form there were no double negations, no fictitious
quantifiers and all quantifiers bound only one variable.

Because the running time of the justification procedure even for justifications not involving
quantifiers could have been exponential in the number of propositional variables, a complexity
value was assigned to each rewrite rule and a running sum of these values was kept during each
run of the procedure. Whenever the sum exceeded certain (quite arbitrarily chosen) value, the
justification procedure terminated, announcing that the task was too complicated and the exam-
ined justification was not accepted. The running time of the rules manipulating the substitutions
for universally bound variables was particularly bad and could lead to the running time of the or-
der of nn, where n was the number of leading universal quantifiers, as all possible substitutions
were blindly considered.

Whether a proof was acceptable was determined by running the justification procedure on
the formula φ ⊃ ψ where φ was the contents of a proof and ψ was the sentence being proved,
both sentences in the standard form.
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The work was continued in 1978 and a number of simple formalizations had been carried
out: set theory (simple facts about containment, union and intersection), lattice theory (simple
facts about linear and partial orders phrased in terms of a lattice of sets), an attempt to translate
several pages in foundations of geometry (later continued in MIZAR-MS).

5. 1978: MIZAR-MS

Even the limited experience in trying to use MIZAR-QC for recording mathematics prompted
quite a number of changes as the language was too frugal for comfort. This led to MIZAR-MS9

after a number of superficial syntactic extensions and a few more substantial additions.
The superficial syntactic extensions and changes included:

1. The propositional connectives written as: NOT, &, OR IMPLIES and IFF.
2. Sentence labels became optional.
3. Relaxed usage of parentheses (MIZAR-QC required almost full parenthesizing and no sur-

plus parentheses were permitted).
(a) Quantifiers were treated as connectives with lowest priority.
(b) Parentheses were not required after negation.
(c) In a compound formula with conjunctions (or disjunctions) as the only kind of connective,

no parentheses were required and such connectives were right-associative.
4. Diffuse (compound) statements present in MIZAR-PC were reintroduced with the opening

bracket NOW.
5. Global constants were allowed (in MIZAR-QC, CONSIDER was permitted only in proofs).
6. In assumptions, the use of THAT after ASSUME was not required for a single proposition as

an assumption.
7. In universally quantified formulae, HOLDS can be omitted if the scope is an existential for-

mula (EX ...).

There was also a number of substantial additions and changes.

1. Predicate definitions, syntactically

FOR {<variables> BEING<specification>}+

ST <sentence>
PRED<pred id> DENOTES<definiens: sentence>

The arguments of the defined predicate were given by <variables> typed by <specification>
in the listed order. It was also possible to introduce predicates with no arguments.

2. Scheme definitions, syntactically

SCHEME<scheme id> ;
PREDICATE<pred id list> ;
CONSTANT<const id list> ;

<scheme claim>
SINCE

<formal premise1: labeled sentence> ;
. . .
<formal premisek : labeled sentence> ;

PROOF . . . END

9 This effort was also financed by Płock Scientific Society.
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A scheme is a pattern of theorems expressed in terms of formal predicates and constants.
A specific theorem matching <scheme claim> is obtained after providing actual premises
that appropriately match the formal ones given by <formal premise>s. In a justification, a
scheme was used as follows

<sentence> SCHEME <scheme id> ( label1, ..., labelk )

The <sentence> was accepted if it matched the <scheme claim> of <scheme id> and
the sentences labeled label1, ..., labelk matched the premises of the scheme. The actual
predicates and constants were automatically reconstructed from actual premises and the
theorem being justified. There was no other means to specify the actual predicates and
constants. Schemes were not fully implemented at that time.

3. Specification (type) declarations, only of the form

TYPE<id>

Every variable was typed either by the predefined specification ANYTHING or a declared
type. This feature was responsible for MS in MIZAR-MS, namely Multi Sorted.

4. The keyword TAKE replaced SET (from MIZAR-QC) and became the only statement in-
troducing existential quantifiers when computing the contents of a proof. The role of the
CONSIDER statement was reduced to existential elimination only.

5. Absolute equality = and inequality <> were predefined. While equality was automatically
processed as an equivalence relation, inequality was not processed as a symmetric relation.
(As a curiosity we would like to mention that in BY justifications, labels designating equalities
had to be listed last.)

Two larger texts were developed:

1. Elżbieta Ramm and Edmund Woronowicz proved the correctness of a factorial computing
program using the Winkowski method of reasoning about programs, their work appeared
later as [5].

2. Jerzy Zabilski and Roman Matuszewski translated pages 27–38 of Foundations of geometry
by K. Borsuk and W. Szmielew.

One of the problems faced in all of these formalizations was caused by the lack of any
support for stating the axioms of the theory one wanted to work in. Two workarounds were
used: either stating the entire development within one compound statement with axioms as
assumptions or stating the axioms at the main text level (typically at the very beginning) and
letting the analyzer report that they were not accepted. This problem was partially resolved in
MIZAR-2 (1981) and finally in PC-MIZAR (1988–89).

At that time, the MIZAR group started to grow substantially while anchored at the Białystok
Branch of Warsaw University. MIZAR-MS was implemented by Czesław Byliński, Piotr Rudnicki,
Andrzej Trybulec, Edmund Woronowicz and Stanisław Żukowski on a CDC 6000 in Pascal/6000.

6. 1978–79: MIZAR-FC

Until 1978 MIZAR had been lacking functional notation and therefore had only simple
terms. The situation has changed now.
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6.1 Function definitions

Two syntactic constructions served to introduce functions:

1. <choice statement> introduced the so called choice functions and had the following syntax

<FOR-prefix>
CONSIDER<choice list>

SUCH<conditions>

The names of defined functions were given by identifiers from <choice list> and their argu-
ments were given by (optional) <FOR-prefix>. For example:

FOR X, Y CONSIDER F, G SUCH THAT Z1: F <> G AND
Z2: B[X,F,Y] AND
Z3: B[X,G,Y];

introduced binary functions F and G which were used to build terms, e.g., F(A,B).
A <choice statement> with <conditions> had to be justified and for the above we had to
justify the existence of F and G, i.e., we had to prove that:

FOR X, Y EX F, G ST F <> G & B[X,F,Y] & B[X,G,Y]

In further text, a reference to one of the labels in <conditions> above, say ăZ3, referred to
the following sentence:

FOR X, Y HOLDS B[X,G(X,Y),Y]

Here is a more tangible example of defining the intersection of two sets:

FOR X, Y BEING SET
CONSIDER CAP BEING SET SUCH THAT
CAPCOND: FOR Z BEING INDIVIDUAL

HOLDS IN[Z,CAP] IFF (IN[Z,X] & IN[Z,Y]);

2. <TAKE statement> played a double role and had the following syntax

<FOR prefix>
TAKE<TAKE list> = <expression>

The <FOR prefix> was optional. Without this prefix, the <TAKE statement> played a role
analogous to the <TAKE statement> introduced in MIZAR-MS.
The <TAKE statement> with the <FOR prefix> introduced functions or operations whose
behavior was defined by an expression. One can think of this statement as corresponding
to a λ definition. For example:

FOR X BEING INTEGER TAKE SUCC = X+1;

introduced one unary function to be used for terms like SUCC(A). The type returned by the
function was inferred from the type of the expression; the arguments were defined by the
<FOR prefix>.
The binary + for Integers was predefined. The functions defined in this fashion were
automatically expanded to their definiens when necessary and thus the following statement
did not require additional justification
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SUCC(SUCC(X+Y)) = ((X+Y)+1)+1

The <TAKE statement> was also used to define operations as an alternative notation for
functions. For example:

FOR X, Y BEING REAL CONSIDER MULT BEING ELEMENT
. . .
FOR X, Y BEING REAL TAKE X*Y = MULT(X,Y)

The set of allowed operation symbols, unary and binary, was predefined and was quite
small.

6.2 Relation definitions

Similar to the method of defining operations, predicates could be defined using relational
symbols. The set of allowed binary relational symbols was fixed and quite small. For example,
set inclusion was defined as

FOR X, Y BEING SET PRED X <= Y DENOTES
FOR E BEING INDIVIDUAL HOLDS IN[E,X] IMPLIES IN[E,Y]

and the less than or equal for integers as

FOR X, Y BEING INTEGER PRED X <= Y DENOTES
EX Z BEING INTEGER ST Z > 0 & X+Z = Y+1

where relation > had to be defined earlier.
While the above definitions use the same relational symbols, they define two different

relations as the types of arguments differ.

6.3 Other changes

– The predeclaration feature allowed text to be shortened as one did not have to specify the
type of a variable at its defining point if the name of the variable was predeclared earlier to
be of some type. For example, with the predeclaration

LET X, Y, Z DENOTE SET;

the sentence FOR X, Y, X HOLDS ... was equivalent to the sentence FOR X, Y,
Z BEING SET HOLDS ...
Predeclarations were a precursor of the current reservations.

– The schemes proposed in MIZAR-MS were not implemented because an attempt to incor-
porate functions into schemes forced a change in the very idea of how to implement them.

– Type INTEGER was predeclared as well as binary operations +, *, - and binary relations
<, <, <= and >=. However, their properties had to be given explicitly in each MIZAR-FC text.

– Some syntactic means were introduced to exclude a part of the text from proof-checking.
The text between the following pragmatic comments

(*$J-*)
. . .

(*$J+*)

was checked only for syntactic correctness. It was intended to be a place for declaring
functions and relations and stating axioms defining these notions.
This feature was also used to shorten processing time of longer texts by temporarily switch-
ing off checking for parts of the text which were already finished.
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– The rewrite-rules based justification procedure of MIZAR-QC was abandoned in favor of
model checking, albeit quite naively implemented. In a justification problem we are to decide
whether or not β ⊃ α is a tautology (a negative answer did not always mean that that was
not the case). The sentence was converted into β∧¬α and the procedure looked for a con-
tradiction. The sentence was first converted into a standard form (like in MIZAR-QC). Then
all atomic and universal sentences (collectively called basic sentences) were collected, at
this stage the scopes of universal quantifiers were not inspected. There was a limit (n ≤ 10)
on the number of such sentences. In the next step all 2n cases of possible logical valuations
of these sentences were considered and each was checked to see whether or not it led
to a contradiction. In this last stage, possible instantiations of positively occurring universal
sentences were considered, one such sentence at a time, which meant that the universal
sentences did not “cooperate” in the process.

MIZAR-FC was used to record a number of larger texts. Among these texts was the initial
segment of the book on arithmetics by Grzegorczyk [1]. The book was so rigorous and detailed
that the blow-up factor in the translation to MIZAR-FC was reasonably small. This effort lasted for
several months with participation of Andrzej Trybulec, Czesław Byliński and Stanisław Żukowski.

Elżbieta Ramm and Edmund Woronowicz, [5] rewrote their earlier developments in MIZAR-
MS into MIZAR-FC on building an environment for proving properties of programs.

MIZAR-FC was implemented in Pascal/6000 by Czesław Byliński, Roman Matuszewski,
Elżbieta Ramm, Piotr Rudnicki, Andrzej Trybulec, Edmund Woronowicz, Stanisław Żukowski.

7. 1981: MIZAR-2

The experience of all previous MIZARs resulted in Andrzej’s design of a language sim-
ply called MIZAR whose processor was team implemented on ODRA 1305 (ICL 1900) with
contributions by Czesław Byliński, Henryk Oryszczyszyn, and Piotr Rudnicki. The first release
of the system on July 10, 1981 was quickly followed (nobody seems to be sure why) by the
second release on September 28, 1981. This release was further called MIZAR-2 and in the
following years was ported to quite a number of different machines, e.g., mainframe IBM and
UNIX. MIZAR-2 offered substantial improvements over its predecessors and also has had quite
a future: its reimplementation in 1986 as MIZAR-4 directly led to the current MIZAR.

A MIZAR-2 text was split into two sections

environ
MIZAR statements with no justifications,
syntactic checking only

begin
statements with justifications

Note however, that each MIZAR-2 text was a stand-alone unit and there was no possibility
of information flow between articles (besides copying text). The environment section was the
place to state all the machinery and facts needed for developments in the text proper. Since
the environment section was checked only for syntactic correctness, it was not unheard of that
someone stated a false claim making further proving more convenient.

We resort to several illustrative examples in presenting more important features of MIZAR-
2 as a more general description would require substantial space.



MIZAR: THE FIRST 30 YEARS 13

7.1 Types

Several syntactic means were available for defining new types of objects. The simplest of
them was just introducing a name for a longer type expression, e.g.,

TYPE RELATION DENOTES SUBSET OF [U,U];

In a more complicated definition one could specify a type as a set of all objects satisfying certain
conditions

TYPE MAP OF A,B BEING NONEMPTY
INCLUDES F BEING SUBSET OF [A,B]
SUCH THAT
AXF1: FOR X BEING ELEMENT OF A

EX Y BEING ELEMENT OF B ST [X,Y] IN F AND
AXF2: FOR X BEING (ELEMENT OF A), Y1, Y2 BEING ELEMENT OF B

ST [X,Y1] IN F & [X,Y2] IN F HOLDS Y1=Y2
PROOF ... END

One had to prove non-emptiness of such a type by demonstrating the existence of the sample
object with the desired properties.

One could also define structures, e.g., the first step in defining a field

TYPE FIELDSHAPE CONSISTS OF
UNIV BEING NONEMPTY,
ADD, MULT BEING (RELATION OF PAIRS(UNIV),UNIV),
O, E BEING (ELEMENT OF UNIV);

This was stated in the environment and the needed field properties were then given as axioms.
Given a FIELDSHAPE F one could refer to its components as e.g. ADD(F).

7.2 Definitions of functions with an explicit format

Some freedom was added into the way the format of a function is defined. Namely, in the
case of choice functions, the arguments of a function were all variables from the FOR prefix in
the listed order but this restriction is now removed.

DEFINITION LET A,B BE NONEMPTY, X BE (ELEMENT OF A),
Y BE (ELEMENT OF B), F BE MAP OF A,B;

PRED Y = VALUE(F,X) DENOTES [X,Y] IN F
PROOF
THUS EX Y BEING ELEMENT OF B ST [X,Y] IN F BY ... ;
THUS FOR Y1,Y2 BEING ELEMENT OF B

ST [X,Y1] IN F & [X,Y2] IN F HOLDS Y1 = Y2 BY ...
END

END;

In the above definition the format of the function is given explicitly: the function has two explicit
arguments, although it really has four arguments: A, B, X and F. A proof of existence and
uniqueness was required for a defined function.

There was no means to make an explicit reference to the definiens of a function, however,
the following sentence was obvious (for appropriate arguments)

[X,Y] IN G IFF Y = VALUE(G,X);
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7.3 Definitions per cases

New syntax was added which helped to organize a definiens into a more readable phrase
than just a long conjunction of implications, e.g.

DEFINITION
LET S BE SIMPLANE, A, B, X, Y, Z BE ELEMENT OF POINTS(S)

SUCH THAT Z: A<>B;
PRED Z IS CONJ OF A, B, X DENOTES
WHEN X=A => Z=A
WHEN X=B => Z=B
OTHERWISE [[A,X,Y],[A,B,Z]] IN NEGSIM(S)

END;

A definition given by cases required a justification of consistency. Although definitions per cases
were meant to be available also for functions, they became fully implemented in PC-MIZAR of
1989.

7.4 Schemes

The schemes proposed in MIZAR-MS are now fully implemented and the scheme of in-
duction is finally available

SCHEME INDUCTION;
PRED P;

FOR K BEING NATURAL HOLDS P[K]
SINCE
A: P[1];
B: FOR K BEING NATURAL ST P[K] HOLDS P[SUCC(K)]

END;

This scheme was always assumed in the environment as proving it in MIZAR-2 would be quite
a challenge. However, there were a number of defined existence schemes. E.g., the following
scheme was useful in proving the correctness of the definition of a function

SCHEME RELDEF;
PRED P;
(EX R BEING RELATION

ST FOR X,Y BEING A HOLDS [X,Y] IN R IFF P[X,Y]) &
(FOR R,L ST ((FOR X,Y BEING A HOLDS [X,Y] IN R IFF P[X,Y]) &

(FOR X,Y BEING A HOLDS [X,Y] IN L IFF P[X,Y]))
HOLDS R=L)

PROOF ... END;

and its proof used the scheme of separation of subsets which was declared in the environment.

7.5 Justification procedure

The justification procedure was still a disprover looking for a model of a formula obtained
after negating the sentence to be justified and conjuncting it with all the sentences used as
premises. However, internally the procedure has undergone a substantial remake.
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Firstly, the procedure did not blindly consider all possible valuations of basic sentences
but rather tried to compute a valuation which would provide the sought for model. This process
involved performing joins and intersections of lists of valuations.

Secondly, the procedure did not blindly consider all possible substitutions for bound vari-
ables. Instead, a sort of pattern matching procedure was performed to find “promising” sub-
stitutions by matching basic sentences with their counterparts in the scope of a quantifier and
containing bound variables. The collected substitutions were then subjected to similar list ma-
nipulations of joins and intersections as the valuations above.

One restriction remained: in searching for a model the procedure never simultaneously
considered substitutions into more than one universal sentence. This had the drawback of not
using the full power of unification but it had the advantage of an inference checker running very
fast. The latter was happening at the expense of the MIZAR author being forced to write small
inference steps.

7.6 Miscellany

– Symbols of relational operators and operations were fixed and the language did not provide
any means for adding new ones.

– The keyword THEOREM could have preceded a (labeled) sentence but did not play any role
otherwise. There was some discussion to introduce other similar keywords like: proposition,
lemma, corollary, etc. It has not happened until now.

– The RECONSIDER statement allowed for a change in the type of an object (this required a
justification).

– Several notions, or rather notations only, were predefined
• set theory: CLASS, SET, IN NONEMPTY, ELEMENT OF and SUBSET OF.
• arithmetic: the sets NATURALS, INTEGERS were predefined as well as NATURAL

being a shorthand for ELEMENT OF NATURALS and INTEGER for ELEMENT OF
INTEGERS.

• Small natural constants (up to 9999999).
Only the most rudimentary (if any) properties of these notations were available automatically,
all essential ones had to be stated in each text that used them.

– Operational brackets [ and ] for constructing expressions, intended to be used for n-tuples
(e.g., pairs, Cartesian products) and type aggregates (e.g., fields).

– Attributive format for predicates such that one could write: X IS COMPACT or U IS
NEIGHBORHOOD OF W.

– Iterative equality.

7.7 Formalizations

The translations into MIZAR-2 included

– On the homotopy types of some decomposition spaces by K. Borsuk, formalized by A. Try-
bulec. This development is continually being maintained and its final version is included in
MML as [15].

– A proof that a field with conjugate and a plane with similarities are mutually interpretable by
K. Prażmowski and P. Rudnicki.

– Pigeonhole principle, by P. Rudnicki.
– Basics of set theory and theory of relations, by Z. Trybulec.
– Basics of general topology, by Cz. Byliński.
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In all of these formalizations, the stress was on proving theorems rather than developing types
and auxiliary functions which were usually just stated in the environment without the burden of
having to justify their correctness.

In the following years, MIZAR-2 was also applied to prove properties of programs [7] and
software specifications [6]. The approach was based on natural, operational semantics of pro-
grams proposed by R. Burstall and J. Winkowski.

On December 13, 1981, martial law was declared in Poland. A side effect was our limited
access to computers which turned out to be a blessing in the long run as finally there was some
time to order a lot of thoughts and designs. For several months we were deprived (like all other
people in Poland) of telephone connections and inter-city travel was troublesome as special
permits were imposed. This had an adverse effect on the MIZAR team which was split between
Białystok and Warsaw.

8. 1982: MIZAR-MSE

Numerous experiments with MIZAR-2 indicated that the language was satisfactory for
recording some kinds of mathematics. Unfortunately, the semantics of the entire system seemed
too complicated and nebulous for precise description. This prompted Andrzej to define a small
sub-language of MIZAR. The sub-language included the well tested and frequently used con-
structs that were also amenable for complete and precise description [10].

The sub-language was named MIZAR-MSE and covered multi-sorted predicate calculus
with equality, thus MSE. There was no functional notation in MIZAR-MSE, no definitions for
predicates or schemes.

The first version of MIZAR-MSE was implemented by Roman Matuszewski, Piotr Rudnicki
and Andrzej; numerous further and substantially different implementations followed, too many
to mention here.

It was hoped that MIZAR-MSE could be used in teaching logic and some fragments of
mathematics and indeed the hope was materialized as MIZAR-MSE was used at many univer-
sities all over Europe and North America. One of the frequently voiced criticisms of MIZAR-MSE
was that it was too far removed from the mathematical practice and recently we are witnessing
a general switch to using “full” MIZAR in teaching. Although quite a number of longer texts were
written in MIZAR-MSE and distributed to users, these texts were stated in a very frugal notation
and constituted more of an exercise in logical manipulation than in mathematics.

A demonstration of MIZAR-MSE was presented during the International Congress of
Mathematicians, Warsaw 1982, in August 1983. The demo included a very nice example sug-
gested by Prof. J. Łoś:

Prove that if the union of two equivalence relations is full then one of the relations is full.

An interesting experiment with MIZAR-MSE[4] was run in the popular mathematics and
physics monthly Delta for 10 months starting in September 1983. For 10 consecutive months
Delta printed short papers about MIZAR-MSE and this was intended to form a gentle course on
the system. Each month three exercise problems were posted and the readers were encouraged
to send in their solutions on paper by regular mail (as it was several years before the Internet).
The solutions were typed in and checked by the machine and the results sent back to the readers
by regular mail.

MIZAR-MSE was used in the preparation of a number of MSc theses, the first of which was
by Henryk Oryszczyszyn titled A generalization of the Szmielew oriented order (on dendrites).
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9. 1982: MIZAR-3

MIZAR-3 was meant to be an extension of MIZAR-2 and its implementation was attempted
on ODRA 1305 in Pascal-1900. It was the first multi-pass MIZAR processor with a lot of stress
on the design of intermediate files. MIZAR-3 had a richer and more systematic syntax than
MIZAR-2. Andrzej added some keywords for naming the various correctness conditions re-
quired for different definitions: existence, uniqueness, coherence, consistency,
correctness and these keywords are still with us today. MIZAR-3 was based on the von
Neumann-Bernays-Gödel set theory with classes.

This version of MIZAR was entirely experimental, never completed,10 and never used for
any substantial formalizations.

10. 1983–84: MIZAR-HPF

The language of MIZAR-HPF was designed by Andrzej in 1983 and then implemented
on PDP-11 under RSX. This was the first time when working from a monitor became com-
monplace and a dedicated editor for this MIZAR was created. This editor, called EDH, provided
syntactic checking for MIZAR-HPF and was designed and implemented by Stanisław Żukowski,
who also implemented the reasoning (contents of proofs) checker. Further processing was de-
signed only for syntactically correct texts. Both the editor and the processor proper were driven
by a modifiable LL(1) grammar which facilitated experimenting with syntax. There were many
such experiments, but not too many of them left a tangible trace. The semantic analyzer was
written by Czesław Byliński and the inference checker by Andrzej Trybulec.

While MIZAR-HPF was meant as a sub-language of MIZAR-3, it is probably best seen as
a collections of extensions of the frugal MIZAR-MSE. Features added include:

1. Unary and binary functions could be written in the usual prefix and infix notation but the
functional notation of term constructors also included:

– the F of x1,x2, . . . ,xn, e.g., the center of G, the line of a, b.
– Operational brackets (always in pairs: left and right), e.g., [x,y] for an ordered pair,
{x,y,z} for a set.

– General notation for functions x0(x1, . . . ,xn) where x0,x1, . . . ,xn are terms, e.g., f(x,y),
(f*g)(x), (f+g)(x).

2. A richer set of formats for atomic sentences:

– Attribute format in general form x1 is Aof x2, . . . ,xn with variants: x1 isA, or x1,x2, . . . ,xk
are A, or x1,x2, . . . ,xk are A of xk+1, . . . ,xk. E.g. x is even, f is inverse
of g, a, b are isomorphic.
The more natural format of negation for such sentences was also introduced, e.g., x
is not even.

– For binary predicates the infix format was provided.
– A special format for ternary predicates, e.g. x = y wrt E

3. Sorts with parameters, in a general format T of x1,x2, . . . ,xn, where T is an identifier (when
n = 0 then of must be omitted). Parameterized sorts permit substantial economy in con-
structing terms. The standard illustration of this point is the composition of two morphisms
in a category: consider the following declarations

10 One of the unpleasant side effects of this effort was that overworked Czesław Byliński, the leading implementer,
ended up in a hospital for several weeks.
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let C be category;
let a,b,c be object of C;
let f be morphism of a, b;
let g be morphism of b, c;

A straightforward notation for the composition of two morphisms could have looked like
Comp(C,a,b,c,f,g) where all six arguments of the composition had to be specified
explicitly.
In MIZAR-HPF the composition could use the natural notation f*g where the remaining four
arguments could then be reconstructed from the sorts of f and g. (This feature was available
to some extent in MIZAR-2.) The omitted arguments were called hidden parameters, and
thus HPF, for hidden parameters and functions.

4. Default quantifiers allowed for skipping of leading universal quantifiers at the formula level.
Thus, instead of

for A, B, C being SUBSET of U st A <= B & B <= A holds A = B

one could shortly state A <= B & B <= A implies A = B to achieve the same
result provided an appropriate predeclaration (reservation) was made for A, B and C earlier.

In 1984, Andrzej started his one-year visit at the University of Connecticut in Storrs.11

11. 1986–1988: MIZAR-4

In 1986, MIZAR-4 was implemented as a redesign of MIZAR-2, but taking into account
features of all previous versions. The implementing team consisted of Czesław Byliński, Marcin
Mostowski, Andrzej Trybulec, Edmund Woronowicz, Anna Zalewska and Stanisław Żukowski.
Since the target machine, PDP-11, was relatively small it was necessary to design a number
of passes that communicated through files. Originally there were seven passes and the split
into passes was mainly forced by the limited amount of memory on the machine (which were
really Soviet clones of PDP-11 named SM-4 working under RSX-11). Over time the passes were
taking on meaningful roles and their number was reduced to four when MIZAR-4 gave birth to
PC-MIZAR in late 1988.

In late 1986 MIZAR-4 was ported to PCs and distributed to several dozen users over the
next few years (its distribution continued until early 1989). MIZAR-4 was also an experimental
system that was subjected to intensive evolution.

The switch to PCs under DOS also resulted in a not very good decision to use extended
ASCII IBM Set II. The initial excitement of having several dozen characters that frequently occur
in mathematical texts (and many characters that do not occur there at all) faded very quickly in
the first attempt to port the system to Linux in November of 1999. The extended ASCII disap-
peared in September of 2001, however, its 12 year presence caused a lot of grief for people that
did not use vanilla DOS systems (but it did not concern the core MIZAR team).

We would like to mention that Grzegorz Bancerek started his university studies in 1985
and by 1987 joined the MIZAR group; Grzegorz’s presence has had a big impact on the entire
future of MIZAR.

11 Most likely, this visit would have had continued if not for Andrzej’s problems with his US visa. Having a single entry
US visa, Andrzej left the US for a MIZAR workshop in Belgium and upon his return was stopped at the US border.
But this story is best told by Andrzej himself.
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11.1 Vocabularies

Unlike in all previous MIZARs, one could now define multi-character symbols to be used
in formats of predicates and functors and one could also define operational brackets. These
symbols constituted a separate lexical category and parsing relied on their recognition. The
symbols were declared in special files called vocabularies.

The declaration of vocabulary symbols added substantial diversity to the MIZAR texts as
now the allowed formats for predicates and operations included infix (prefix, postfix) notation
with an arbitrary number of left and right (right, left) arguments. Although it does not seem like
a big change, written MIZAR texts became more varied and easier to read. Further, within the
environ part, one could define priorities for the defined symbols of predicates and functors
such that some economy of parentheses was under control of the text author.

But there was also a side effect causing quite unexpected albeit minor troubles. Namely,
an identifier declared as a symbol in a vocabulary could not serve as an identifier anymore.
The most frequent mishap was with the single character U which was used as symbol for set
union and any attempt to use it as an identifier (for a variable or a label) led to a not immediately
obvious syntactic error. Even experienced MIZAR users tripped over this. It took years before
such “symbolic” traps were eliminated (set union is now written as \/).

11.2 Predeclared

Two modes set and Any were predeclared but their meaning must have been given in
every article. (Mode Any has been eliminated in mid 90s.) Also, modes Element of and
set of were predeclared, the former took an argument which was a set while the latter’s
argument was a mode. The elementhood relation was not predeclared and some authors used
in while other preferred ∈, a character available in extended ASCII.

Nat was predeclared and small non-negative integer constants were recognized as ob-
jects of type Nat.

11.3 Reservation

One could reserve types of variables, for example:

reserve a,b,t,x,y,z,m,n,k for Nat;

such that later one did not have to specify types of variables

for t,x holds t*x=x*t;

and one could also omit leading universal quantifiers

n + m = m + n;

which were added automatically. Interestingly, there were authors who preferred not to use this
feature.

11.4 Definitions

Definitions got uniform syntax and were written in definitional blocks delimited by definition
and end. The keywords func, pred and mode indicated the nature of the defined notion. In
definitions of functors, the keyword it was used to denote the object being defined, e.g.,
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definition
let A, B be set;
func A u B -> set means
Union: x in it iff x in A or x in B;

The above defines the union of two sets and in the definiens it denotes the union of A and B.
This keyword was also used in mode definitions, e.g.

definition
mode open_set -> set means open: it = Int it;

end;

The definitions of functors and modes required correctness conditions to be proved; existence
and uniqueness for functors; existence (i.e., non emptiness) for modes.

One could change the type of a functor by using the redefine statement, e.g.,

definition
let A be set;
let X, Y be Finite_Subset of A;
redefine X u Y as Finite_Subset of A;

end;

The redefined functor had a more specific type as its arguments had narrower types. For a
redefinition one needed to prove that the redefined functor was coherent with the original.

11.5 Schemes

Schemes got a new syntax and the induction scheme was now written as

scheme IND {P[Nat]}:
for n being Nat holds P[n]

provided
P[0] and
for n being Nat holds P[n] implies P[n + 1];

11.6 A problem

MIZAR-4 evolved and its evolution was influenced by formalizing in MIZAR-4 more and
more of interesting mathematics. Stanisław Czuba maintained a collection called CAMT for
Central Archive of MIZAR Texts.12 At the end of 1988, this collection included 19 texts contributed
during 1987 and 1988.

It was easy to notice that the developed texts overlapped a lot especially in the environ-
ment part where authors were stating set theoretical preliminaries over and over again. Forever,
people’s tastes varied and these set theoretic preliminaries were stated using different notation.
This led to a lot of repeated efforts and thus a waste of resources. Some sort of communication
between independently developed texts was needed. Before this happened, MIZAR as a project
got a financial boost.

12 In Polish: CATM for Centralne Archiwum Tekstów Mizarowych.
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12. 1987: RPBP III.24

RPBP III.24 was not a name of a version of MIZAR. It is an acronym of a state research
grant program of the Polish Ministry of Science and Higher Education from which the MIZAR

group obtained substantial financing for a project named Logical systems and algorithms for
computerized checking of proof correctness where the main goal of the project was stated as

Solving the problem of whether or not there is a system of logic suitable for
– formalization of mathematical texts without substantially increasing their size, and
– automated checking of their correctness.

In particular, in answer to the question of whether or not and if so then to what degree,
the Polish system MIZAR satisfies the above requirements and determining directions of
its development and its scope of application.

The research program was coordinated by Prof. Witold Marciszewski and lasted for five years,
1987-1991. The grants obtained through the program provided major funding for the develop-
ment of the MIZAR system and especially the library. During these five years, a dozen of scientific
institutions from all over Poland were involved with the participation of about 100 people. These
efforts resulted in almost 250 MIZAR articles being contributed to the MIZAR library.

13. 1988-89: MIZAR and MML

The ongoing evolution of MIZAR-4 and its implementation on PCs, prompted Andrzej to
name the language simply MIZAR and call its implementation PC-MIZAR. While articles in pre-
vious versions of the language must have been self-contained, the final MIZAR has an accom-
panying data base and allows for cross-references among articles. The role of the environment
part of an article has changed from that in MIZAR-4: the environment section may now only
contain directives importing resources stored in the data base.

The implementation of PC-MIZAR was carried out during 1988 by Andrzej with Czesław
Byliński and other implementors of MIZAR-4. The first three articles were included into the data
base on January 1, 1989—this is the official date of starting the Mizar Mathematical Library—
MML, although this name appeared much later.

13.1 Axiomatics

As of January 1, 1989, the MIZAR data base consisted of three axiomatic articles con-
tributed by Andrzej:

– HIDDEN, see [8, pp. 191–193], contained the declarations of built-in notions and there were
quite a number of them:
• modes: Any,set,Element of,DOMAIN,TUPLE of,Subset of,SUBDOMAIN
of, Real, Nat.

• predicates: =, ∈, ≤ (for real numbers).
• functors: Cartesian product of 2, 3, and 4 sets, bool—powerset, REAL—the domain

of real numbers, NAT—the domain of naturals, + and · for addition and multiplication of
reals.

This special article has been substantially trimmed over time, see [3] and now contains only
the declarations of: mode set, equality = and inequality <> and elementhood, now written
as infix in. All other elements originally in HIDDEN have been constructed and are not
built-in anymore.
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– TARSKI, see [11], contained axioms of essentially ZF set theory in which the axiom of
infinity was replaced by the axiom of existence of arbitrarily large, strongly inaccessible
cardinals (the so called Tarski axiom). This choice of foundation instead of just ZFC was
motivated by certain constructions done in category theory.
This axiomatic article has changed only a little, see [12]. One change concerned the removal
of the auxiliary mode Any, the other change removed the axiomatic definition of powerset
as it can be properly defined using the Tarski axiom.

– AXIOMS, see [13], titled Built-in Concepts, provided properties of built-in notions declared
in HIDDEN including axioms of strong arithmetic of real numbers and naturals.
Having the real numbers available axiomatically from the beginning allowed users to develop
a lot of mathematics right away. It was as late as March 1998 when Andrzej and Grzegorz
Bancerek completed the construction of real numbers. The axiomatic article AXIOMS be-
came a normal article in which all theorems are proven and its title is now Strong arithmetic
of real numbers (see [14]).

13.2 MML

The first “regular” article titled Boolean Properties of Sets, [16] was included into the data
base on January 6. By the end of 1989, there were 66 articles in the collection, covering mainly
the basic mathematical toolkit. 15 years later, at the time of this writing, MML consists of 855
articles and about 50 articles are contributed each year. Almost all of the material about the
current state of MML is available at http://mizar.org.

MIZAR—the language—is a formal system of general applicability and as such has little in
common with any set theory. MML is a specific application of MIZAR in developing mathematics
based entirely on a set theory (see [12]). In building MML, the MIZAR language, the assumed
logic, and the chosen set theory provide an environment in which all further mathematics is
developed. This development is definitional : new mathematical objects can be defined only after
supplying a model for them in the already available theories. MIZAR has been always based on
classical logic because this is the logic used by almost all mathematicians.13

In the last 15 years, the evolution of the MIZAR system has been driven by the growth
of MML. All major components of the system—the MIZAR language, the verifier and the MML
itself—have undergone numerous changes, too many to even mention the more important ones
here. Unfortunately, there is only sparse and incomplete documentation that would allow tracing
this evolution. The situation has improved substantially since all the MML files have been kept
under CVS from the beginning of 2002.

Although the MIZAR language and its processor evolve, their pace of change is relatively
slow. However, even a small change in the language or the verifier may cause vast changes in
the MML; MML is maintained to conform with the current version of the processing software.
Besides these types of updates, MML undergoes many changes and it is continually revised in
an effort to improve its integrity. This imprecise term covers quite a number of diverse issues:
choice of symbols and notation for new (and old) constructors, typing hierarchy, repetition or
presence of almost equivalent notions, redundant (repeated or weaker) theorems, cumbersome
formulation of theorems, etc.

MML is centrally maintained by the Library Committee now headed by Adam Grabowski.
Essentially every submitted article accepted by the MIZAR verifier and which passed some au-
tomatic review is included into the library. Over the years, MML has grown to the size that
searching it has become a problem for MIZAR authors. Even if one knows a lot of the library by

13 Let us note that most of the other proof assistants are based on some other logical calculi.
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heart, one still would like to use a tool for finding a needed fact or notion. For many years the
search tool of choice was the grep utility. However, because MIZAR uses overloaded notations
and different authors do not use notations in a uniform fashion, such searches usually return
a lot of irrelevant material while missing some relevant items. Since 2001 Grzegorz Bancerek
has been developing a tool called MML QUERY which allows for semantics based browsing and
searching.

The organization of material stored in MML is not fixed. MML can be seen as a collection
of intertwined MIZAR articles where authors include whatever is to their liking. Such articles
correspond to primary scientific information that over time give rise to the secondary informa-
tion, i.e., overviews, monographs, textbooks. In 2002, the MIZAR team has begun building an
Encyclopedia of Mathematics in MIZAR, EMM, whose articles have a monographic character
and are extracted from the “raw” material of the contributed articles in a semi-automatic way.
This process is assisted by MML QUERY. Currently, there are five such encyclopedic articles
covering: Boolean properties of sets and basic arithmetic of real and complex numbers.

13.3 FM and JFM

In April-May 1989, Andrzej visited Edmonton and together with the second author was
working on a new MIZAR article. This work revealed the need for a better means to search
the available articles, or at least to browse through and read them. A superficial translation of
MIZAR articles into TEX was prepared and reported in [8]. This small experiment was one of
the steps toward the printed journal Formalized Mathematics14. Several months later Roman
Matuszewski and Stanisław Żukowski prepared more sophisticated technology for translating
MIZAR abstracts into stilted English and then typesetting them in TEX (this work was initially
supported by Fondation Philippe le Hodey, Bruxelles).

The problem with Formalized Mathematics is that once printed on paper the published
abstracts have only some archival value and they do not reflect the evolving nature of MML
making them of limited use for MIZAR authors. In the age of Internet, it was quite natural that
an electronic, hyper-linked version of MIZAR abstracts be created. This materialized in years
1995–97 when Journal of Formalized Mathematics15 was created with support from Office of
Naval Research, USA. This electronic journal reflects the current version of MML abstracts in a
variety of formats.
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16. Z. Trybulec and H. Świȩczkowska. Boolean Properties of Sets. Formalized Mathematics, 1(1):17–23, 1990.



MECHANIZED MATHEMATICS AND ITS APPLICATIONS, VOL. 4, NO. 1, MARCH 2005, 25:33

On the Computer-Checked Solution
of the Kuratowski Closure-Complement Problem

Adam Grabowski

Institute of Mathematics, University of Białystok
ul. Akademicka 2, 15-267 Białystok, Poland

adam@math.uwb.edu.pl

Abstract – Since its beginnings back in 1989, the development of the Mizar Mathematical Library
has been strongly stimulated by the formalization of general topology. In this paper we describe a
solution of the famous Kuratowski closure-complement (and, as a side-effect, the closure-interior)
problem, which are more a kind of mathematical puzzle (or exercise for students) than regular math-
ematics. Based on the large Mizar Mathematical Library, especially using its well-developed part
devoted to the topology, we also construct examples in the topology of a real line illustrating both
exercises. We were surprised by the influence of our solution of this problem on the improvement of
the whole Mizar library.

1. Introduction

Mizar is considered to be a hybrid of (at least) three elements: the first part is the language
which was developed to help mathematicians writing their papers in a form understandable by
machines; the second is software for checking correctness and collecting the results of this
work and last – but definitely not least – is the Mizar Mathematical Library which is considered
the largest repository of the computer-checked mathematical knowledge in the world. While the
starting date for the idea of Mizar as it is fuzzy believed is 1973/74, the beginnings of MML are
exactly stated – January 1, 1989. So the year we celebrate 30 years of Mizar is also the 15th
birthday of MML.

In the beginning, the development of MML was rather an experiment of how to deal with
the system to make it usable not only for computer scientists, but also for mathematicians to
assist them in their ordinary everyday work, now its primarily aim is to collect knowledge in a
uniform way close to mathematical vernacular, checkable by computers as well as readable for
humans. Clearly then, such large repositories can also be a kind of a handbook (or a set of
handbooks) for students.

To avoid making Mizar a fossilized mathematical Latin, but instead a living language useful
for contemporary scientists, it is quite natural to pay special attention to the disciplines which are
most promising, that is which have great impact on the whole of mathematics. It is clear however
that one cannot formalize brand new results without a properly done background which usually
has rather archival flavour. However the formalization of older papers can shed new light on
them or propose new approaches to the well-known notions.

Since its beginnings back in 1989, the development of the Mizar Mathematical Library has
been strictly connected and stimulated by the formalization of topology. Now this tight connection
is by no means over: the Białystok team is working to reach completion (at least we all hope
so) of the Jordan Curve Theorem proof, Mizar formalization of the Compendium of Continuous
Lattices (CCL) still forces the MML developers to revise previous articles in the topic, and work
on the proof of the Brouwer fixed point theorem has started recently.

Manuscript received August 17, 2004; revised October 22, 2004
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As we have mentioned earlier, the notion of a topological space needed some preliminary
development, such as basic properties of sets and subsets, functions and families of subsets of
a set. Three months after the start of MML, a Mizar article (only 27th in the collection) defining
the notion of a topological space was accepted, namely PRE_TOPC [10] dated on April 14,
1989. This proves that topology is a nice subject for formalization, being also one of the main
lectures for students with many good textbooks (but also with many different approaches) to
follow. Due to its many independently developed subtopics it can be formalized rapidly by a
large group of people. One of the irrefutable arguments also was that Andrzej Trybulec who is
the designer of Mizar holds a PhD in topology.

What should be mentioned here is also a didactic value of this formalized discipline: five
exercise sets in topology were prepared for PC Mizar by Czuba and Bajguz (Białystok) in 1989–
90, ca. 100 pages each. A similar choice for didactic experiments (but without Mizar usage) was
made for instance described by Cairns and Gow [3].

The paper is organized as follows: in Section 2 we briefly introduce the problem of 14
Kuratowski sets, Section 3 presents the formalization of the elementary topological notions we
used. Section 4 presents how the problem was solved, while in the last section we draw some
concluding remarks.

2. Fourteen Kuratowski Sets

The primary formulation of this problem was stated by Kuratowski in 1922 [8]:

La table (T ) (p. 186) renferme 14 ensembles que l’on peut obtenir d’un ensemble A
donné en combinant les opérations A et A′. En s’appuyant sur l’axiome IV, le théoréme
6 et le principe de la double négation (A′′ = A), on montre aisément que le nombre de
14 ensembles ne pourrait être augmenté. Nous allons montrer qu’il ne peut être diminué
nonplus.

The table (T ) from the above text is reproduced in Fig. 1.

If A is a subset of a topological space X , then at most 14 sets can be constructed from A
by complementation and closure. There is a subset of the real numbers (with the usual
topology) from which 14 different sets can be so constructed.

The problem which was advertised by Kelley in [7] in the above form, is a particular case
of the following theorem:

Let A be an ordered set and let f : A−→ A be an increasing, expanding and idempotent
mapping, and let g : A−→ A be a decreasing involution. Then, the semigroup generated
by f and g consists of 14 elements (at most).

Along these lines, we will use A′ to denote a complement of A and A− instead of a closure
A to make notation more readable.

A full proof of the problem consists of the following two parts:

– no more than 14 sets can be obtained,
– there exists an example of a topological space and its subset A so that exactly 14 different

sets are produced by applying the closure and complement operators.
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A′−′ A′−′−′−′

A−′−′

A−′−′− A−

A′−′−

A

A−′ A−′−′−′

A−′−

A′−′−′− A′−

A′−′−′

A′

Figure 1. Fourteen Kuratowski sets ordered by inclusion

Considering only the upper (lower) part of the diagram we can illustrate another Kura-
towski problem: the maximal number of different sets we can obtain by applying the interior and
closure operators to any subset A of an arbitrary topological space is seven. Although both prob-
lems of Kuratowski type are of rather elementary character, we aimed at the possible elegant
and maximal reuse of Mizar features. The first approach to the formalization was written in 1996
by the author, but the construction of an example of a concrete topological space and subset
which generate all 14 sets (7 sets, respectively) seemed too work-consuming in those days.

Continuous work on improving the implementation of the Mizar system changed the views
for certain details of the proof. We mind mainly the extension of syntax for brackets which can be
paired in different ways (e.g., left-open right-closed intervals, etc.), the removal of the notion of
the so-called unclusterable attributes and further development of MML, especially preparatory
articles for the proof of the Jordan Curve Theorem.

A Mizar article (over 1500 lines) containing the complete formalized solution by Bagińska
and Grabowski [2] was a part of Bagińska’s B.Sc. thesis in mathematics. It was an interesting
experience because the student had not worked with the Mizar system before.1

3. Mizar Formalization of Topology

In this section we will briefly introduce the state of the formalization of the topology in
the MML. The main facts which are encoded in MML are shown below (we also cite the MML
identifiers of the articles which contain the results):

– Tichonov theorem (YELLOW17),
– Fashoda meet theorem (JGRAPH_1),
– Urysohn lemma (URYSOHN3),
– Jordan Curve Theorem – a version for special polygons (GOBRD12),
– Brouwer fix point theorem for real intervals (TREAL_1),
– Stone–Weierstrass theorem (WEIERSTR),
– Nagata–Smirnov theorem (NAGATA_2).

1 In fact, she soon left the project and she is not working with Mizar as of now.
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3.1 Structures and Attributes

The backbone structure for the entire topological part of MML is the immediate successor
of 1-sorted, that is TopStruct (extended only by the selector topology which is a
family of subsets of the carrier. Originally it was designed as a type with non-empty carrier,
so many of the theorems are still formulated for non empty TopStruct. While there are
over 100 structure types in the whole MML, here the formal apparatus is very modest and
restricted only to this one type. Properties of a topological space are added to it through the
attribute mechanism, namely TopSpace-like. Since it is very natural (the carrier of the
space belongs to the topology, it is closed also for arbitrary unions of elements and binary
intersections), we will not cite it here. This adjective is used in the definition of the Mizar type to
understand TopSpace simply as TopSpace-like TopStruct.

3.2 Basic Notions

As mentioned earlier, the main Mizar functors used for our purpose were closure (which
is not introduced in MML by four Kuratowski axioms, but is of the form below) and complement
(defined naturally for a subset A of E as E \A).

definition let GX be TopStruct, A be Subset of GX;
func Cl A -> Subset of GX means :: PRE_TOPC:def 13
for p being set st p in the carrier of GX holds p in it iff

for G being Subset of GX st G is open holds
p in G implies A meets G;

end;

We will use a new postfix synonym for Cl, namely -.
The attribute open describes elements which belong to the topology of a given space. As

a standard, a subset is closed if its complementation is open.

3.3 Some Statistics

About one-fifth of the Mizar library ( i.r., 167 out of 855 articles in MML, i.e. about one
fifth) deals with topology. Even if calculation is rather rough since there is no classification of
MML e.g., according to 2000 AMS Subject Classification (and criteria are not exactly clear; as
a rule we counted articles which used any notation from [10], [4] or those dealing with formal
topology), it is a significant amount.

Table 1. Statistical data about topological articles

Article series Number of articles kB Subject
TOPS 4 168 basics of general topology

TOPREAL 9 736 Euclidean topological spaces
GOBOARD 14 1556 Go-Boards and special polygons
JORDAN 36 4202 JCT core series
JGRAPH 6 2019 versions of the Fashoda theorem
BORSUK 6 530 products, algebraic topology
WAYBEL 24 1735 CCL-needed stuff
FINTOPO 4 163 formal topology

others 64 4154
Total 167 15263
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There is an advanced searching tool – MML Query – which is good for authors who are
rather well acquainted with Mizar (and behaving better when searching, not when browsing),
but due to requests obtained from users to gather articles in a Bourbaki manner we plan to add
AMS classification manually in the nearest future. We are considering adding the mandatory
field to the bibliography file as AMS 2000 to be filled by the author but we will have to classify
855 articles by hand.

Some measurements of information flow between articles have been done by Korniłowicz.
The amount of information that an article A transfers to an article B is calculated as the sum of
information transferred by all theorems from A which are referred to in B, counted according to
the Shannon formula. The article A is a direct ancestor of B if it transfers the largest quantity of
information into B. Using this criterion, 32 articles are descendants of PRE_TOPC in a tree of
dependence of all MML items.

Most of “topological” articles are devoted to the proof of the famous Jordan Curve Theo-
rem. The first article dedicated to this topic is dated at the end of 1991. Even if in Mizar there
is only a version of JCT for special polygons fully proved, the theorem has had a great impact
stimulating the development of MML. Statistically, more than five articles devoted to this topic
were submitted yearly (three in a year if we count only JORDAN series), basically written by the
authors of University of Białystok, Poland and Shinshu University, Nagano, Japan.

3.4 Topology of a Real Line

To construct a real example we had the possibility of choosing between the two represen-
tations of a real line with the natural topology. We decided to use R^1 which is the result of an
application of a functor TopSpaceMetr on the metric space RealSpace.

Due to the lack of space we will not explain in detail the differences between the three rep-
resentations of a natural topology on the real line: REAL, R^1 and TOP-REAL 1, but develop-
ing in parallel two approaches to the pairs: the ordinary ordered pair as defined by Kuratowski
and the two-elemented finite sequence seems too ineffective.

4. The Solutions

In this section, we present how the problem of fourteen Kuratowski sets was expressed
in the Mizar language. Although reusability of this fact is rather small, the problem itself is well-
known in the literature and deserves to be formalized in MML. Even if many applications in other
terms (e.g., group theory) are available, we decided to code it in a clean topological language.

4.1 The Closure-Complement Problem

When we tried to formulate the whole problem in Mizar, at the beginning we met one of
the low quantitive restrictions of the Mizar language: enumerated sets can have at most ten
elements. This constant can be easily extended, but without changes in the checker itself, the
division of Kuratowski sets into two smaller parts with cardinality seven appeared to be very
feasible.

When thinking of the partition of the Kuratowski sets, one can imagine a few classifica-
tions: one of them is for example to distinguish those where variables occur in positive (i.e., not
complemented) or negative form. This is reasonable when we look at the diagram of Fig. 1. The
positive part is the upper one.
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The most useful approach however, as we point out later on, was to divide the family of
subsets into its closed and open parts, and the rest. Thanks to the functorial clusters2 mecha-
nism we obtain immediately, that the closure of a set is closed, and the complement (‘ in Mizar)
of a closed set is open.

definition let T, A;
func Kurat14ClPart A -> Subset-Family of T equals :: KURATO_1:def 3

{ A-, A-‘-, A-‘-‘-, A‘-, A‘-‘-, A‘-‘-‘- };
func Kurat14OpPart A -> Subset-Family of T equals :: KURATO_1:def 4

{ A-‘, A-‘-‘, A-‘-‘-‘, A‘-‘, A‘-‘-‘, A‘-‘-‘-‘ };
end;

theorem :: KURATO_1:5
Kurat14Set A = { A, A‘ } \/ Kurat14ClPart A \/ Kurat14OpPart A;

registration let T, A;
cluster Kurat14Set A -> finite;

end;

The registration above is to enable the use of the functor card yielding natural numbers.
This is needed to allow a comparison with numerals, because essentially the Card functor,
of which card is a synonym, yields ordinal numbers. The following lemma was a rather easy
provable property of the Fraenkel operator.

theorem :: KURATO_1:7
card Kurat14Set A <= 14;

To prove that the 14-Kuratowski set is closed for the operations, we effectively used only
a fact that A−′−′−′− = A−′− (or A-‘-‘-‘- = A-‘- in Mizar notation). As it turned out to
be convenient, A−− = A− should be introduced as a projectivity property in Mizar, sim-
ilarly as it is in case of a complement operator (involutiveness). The tactic of using per
cases was also very useful and intuitive. To conclude that both operators do not map outside
the given set, we formulated and proved the following theorem.

theorem :: KURATO_1:6
for Q being Subset of T st Q in Kurat14Set A holds

Q‘ in Kurat14Set A & Q- in Kurat14Set A;

The generation of all 14 Kuratowski sets can be treated as the result of a certain algorithm,
so it would be enough to prove that this algorithm terminates. A similar problem occurred in the
case of the famous elegant Rado proof of the Hall Marriage Theorem [11] when we had to
formalize the process of decreasing the cardinality of any element of the family of subsets.
Because as of now, there is no comfortable method of algorithm coding in Mizar, we had to
handle it in a different way.

registration let T be non empty TopSpace, A be Subset of T;
cluster Kurat14Set A -> Cl-closed compl-closed;

end;

The above cluster uses new attributes, which can be translated (as in fact they were in
the Journal of Formalized Mathematics [1] automatically) as “closed for closure operator” and
“closed for complement operator”. The registration has its justification based on KURATO_1:6,
which completes the proof of the first part.

2 Bancerek proposed term adjective registration for this.
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Using methods developed and checked in the case of the closure-complement problem,
we were able to solve analogously the other problem of Kuratowski, that is closure-interior.
The solution was even less problematic because of the smaller number of sets (below the 10-
arguments barrier).

4.2 The Example of 14-Subset

It is natural to search for an appropriate example in the real line with the natural topol-
ogy, as Kuratowski proposed. Frankly speaking, the lemmas for the real euclidean plane are
developed much better. We decided to use the set as shown below.

definition
func KurExSet -> Subset of R^1 equals :: KURATO_1:def 6

{1} \/ RAT (2,4) \/ ]. 4, 5 .[ \/ ]. 5,+infty.[;
end;

To shorten the notation we had to define intervals of rational numbers (only open, as
RAT(a,b)). It is worth mentioning here that to keep notations for intervals as compact and
close to the mathematical tradition as possible, we introduced ].a,+infty.[ as a synonym
to the previously defined in MML halfline(a). Both functors have only one argument since
obviously +infty is not an element of set of reals. For this part of the proof the predicate for
an enumerated list of arguments, namely are_mutually_different, was also essential.

Due to the lack of decimal fractions in MML, the calculus of intervals of numbers was
not comfortable. We had to state for example a theorem of the density of the irrational numbers,
even the formalization of the proof of the irrationality of the base of natural logarithms is relatively
new. The fact of the irrationality of the square root of 2, which was advertised well by Wiedijk
in his famous comparison of 15 provers of the world, was also useful. Too few examples were
previously done by others – but MML focuses on the reusability of introduced theories. The
policy, which resulted in a low number of exercises formalized during the CCL project, caused
the necessity of the trivial calculus on intervals in [5].

Following [12], to show the mutual difference of subsets for each of the fourteen sets we
may create a vector of boolean values 0’s and 1’s indicating whether the certain test points lie
in the set or not. We can order these binary numbers by means of their decimal representation.
As Rusin stated, although 24 > 14, the number of four points is insufficient to show that all 14
sets are different. Table 2 presents points incidence where the test points were respectively:
1,2,3,4,5,6. In our case all 6 points are needed. We used this good-looking way only partially
because there is no comfortable method for representing it in Mizar.

Table 2. Incidence of points in the example set

A = {1}∪
(

(2;4)∩Q
)

∪ (4;5)∪ (5;+∞).

A = [1,0,1,0,0,1] : 41 A′ = [0,1,0,1,1,0] : 22
A− = [1,1,1,1,1,1] : 63 A′− = [1,1,1,1,1,0] : 62

A−′ = [0,0,0,0,0,0] : 0 A′−′ = [0,0,0,0,0,1] : 1
A−′− = [1,1,0,0,0,0] : 48 A′−′− = [0,0,0,1,1,1] : 7

A−′−′ = [0,0,1,1,1,1] : 15 A′−′−′ = [1,1,1,0,0,0] : 56
A−′−′− = [0,1,1,1,1,1] : 31 A′−′−′− = [1,1,1,1,0,0] : 60

A−′−′−′ = [1,0,0,0,0,0] : 32 A′−′−′−′ = [0,0,0,0,1,1] : 3
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4.3 The Role of Attributes

In order to avoid 14·13
2 = 91 comparisons to check that all 14 sets are different, we decided

to use the adjectives machinery available in Mizar. The following lemma was crucial to reduce
the complexity of the second part of the proof.

theorem :: KURATO_1:60
for F, G being with_proper_subsets with_non-empty_elements

Subset-Family of R^1 st
F is open & G is closed holds F misses G;

Recalling that Kurat14OpPart A is collectively open (that is, all its elements are open
subsets) and Kurat14ClPart A is closed, and taking into account that all elements of these
families of subsets are both proper and non-empty (all these properties are automatically added
via functorial cluster mechanism), we obtain a significantly reduced number of checks (which
were done according to the Rusin’s method). Additionally, because we know that KurExSet
is neither closed, nor open, the final calculation is just summing the cardinalities of disjoint six-
elemented sets and a doubleton.

5. Conclusions

The main achievement of this work is the Mizar article [2] which contains the formalization
of the Kuratowski problem, its full solution in terms of clean general topology and the construc-
tion of an example of a set generating exactly fourteen Kuratowski sets. We used this method
to solve also the Kuratowski closure-interior problem. We put the stress not on the brute force
proving, but we tried to find a possibly elegant proof. As a by-product, we obtained the charac-
terization of subcontinua of a real line with the usual topology [5].

Even if the problem itself has been solved completely, during the codification a number
of ideas arose. Essentially, at the second stage of solving Kuratowski’s problem, when the ex-
ample set had to be constructed, it soon became apparent that the Library Committee of the
Association of Mizar Users should consider a massive revision of MML to merge both metric
and topological spaces, because without such a revision one has to recode between different
approaches. We have three representations of the real line with the natural topology, and this
revision should simplify the formal apparatus.

As a future work, we may point out the classification of sets, as proposed by Kuratowski
(open and closed domains) which was improved for example in [6] (supercondensed and sub-
condensed sets). Some preliminaries are yet done in Mizar by Karno. Recent projects to split
MML into concrete (or classical) and abstract parts (i.e., using the notion of a structure) have
obviously one significant value: in this way some accidental connections between articles may
be removed to make MML more compact. The larger items in MML are, the smaller the mess
in the library – and consequently knowledge can then be retrieved more effectively. Topology is
now clusterized relatively well; it turns out to be the most promising discipline to be the most
thorough developed in MML.
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Abstract – The Mizar system is a proof–assistant based on classical logic. A substantial body of
Mizar texts (the Mizar Mathematical Library) has been developed in various areas of mathematics. It
has been quite natural to consider using Mizar as a tool for teaching mathematics; the experience in
this matter dates back to 1975/76.
In this paper we present some historical facts about applications of Mizar in education. We also
discuss the organization of a course on formalization of mathematics offered by the Institute of Com-
puter Science at University of Bialystok. This course employs Mizar as the main tool of instruction.

1. Introduction

The main goal of the Mizar project1 is to create a system for computer–aided formaliza-
tion of mathematics. The ongoing development of the project has resulted in a language for
recording mathematics and software for checking the correctness of written texts. The essential
achievement of the project is a centrally maintained library of mathematics (Mizar Mathematical
Library). The Mizar language (designed over many years by A. Trybulec) is a language suitable
for the practical formalization of mathematics. The language is based on first–order logic and
proofs are written in a style of natural deduction as proposed by Jaśkowski ([3]). During the
development of the Mizar system the author conducted many experiments which guided the
process of Mizar design. Some of these experiments concerned education.

The first use of Mizar as a tool for teaching mathematics dates back to 1975–76. The
first implementation of the Mizar processor was used to teach propositional logic at the Płock
Branch of Warsaw University of Technology (by Roman Matuszewski) and the Institute of Library
Science and Scientific Information at Warsaw University (by Andrzej Trybulec).

An interesting correspondence course based on Mizar–MSE ([8]) was run for 10 months
(September 1983 through June 1984) by a popular Polish science monthly Delta, a magazine
aimed at secondary school students. An introduction to logic using Mizar–MSE (by P. Rudnicki
and K. Prażmowski) was split into 10 parts and each month a part was published in Delta ([6]).
Every part was furnished with a set of exercises the solution of which were meant to be checked
by the Mizar–MSE checker. At that time, hardly anyone had free access to a computer and
therefore the Delta readers were encouraged to send in their solutions of the exercises to the
editor by regular mail. The solutions were then typed in and checked, and the results were sent
back to the authors. The turnaround time for an exercise was rather long, around three weeks.
Altogether the authors of the course received 241 solutions ([5]).

Starting from the academic year 1985–86, Mizar–MSE had been used to teach elemen-
tary logic in a number of one semester courses at the Bialystok Branch of Warsaw University at

1 http://mizar.org
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several departments: mathematics, education and physics. The principal goal of logic training
was to develop skills in deductive reasoning ([9]).

In the spring semester of 1985, a course in foundations of geometry was taught at the
Department of Mathematics of Warsaw University and it also employed Mizar–MSE ([7]). The
course was based on the textbook [4] covering the formal exposition of axiomatic Euclidean
geometry. However, Mizar–MSE did not support functional notation, so the use of the system
had to be limited to chosen parts of the book. Carefully chosen theorems with an appropriate
environment (stating the available facts) were assigned to students for proving. Students were
expected to develop proofs in the Mizar–MSE language and to verify their correctness by the
computer. The main goal of the course was to develop skills in proving simple theorems in
geometry.

In 1987–88 a much richer version of Mizar, called Mizar–4, was applied in teaching “Intro-
duction to mathematics” and “Lattice theory” at the Bialystok Branch of Warsaw University.

In the early 90s, PC–Mizar was used “indirectly” in teaching topology. For technical and
organizational reasons, the laboratory classes were not possible to be conducted at that time.
However, five scripts ([1]) with exercises and their solutions (written in the Mizar language and
checked by the computer) were created and they were used intensively in teaching topology the
traditional way.

Mizar was also used for teaching introductory logic courses at many universities in other
countries, e.g., USA, Canada, Japan, Belgium.

Finally, Mizar has been used successfully as a formal environment to prepare lots of
diploma theses, from the bachelor to PhD level.

2. Formalization of Mathematics Course

2.1 The Setting of the Course

During the spring semester of the 2003–2004 academic year, Mizar was used for the first
time to conduct a course in “Formalization of Mathematics” (FM). The course was introduced as
an obligatory part of the curriculum for all (57) first–year students of the Institute of Computer
Science, University of Bialystok (UwB). The course consisted of 30 hours of lecture (given by
A. Trybulec) and 30 hours of laboratory classes organized in 5 groups, each group lead by
a different teacher (A. Trybulec, A. Naumowicz, A. Rybak, and the authors), with an average
number of 11 students in each group.

The FM course followed a course called “Introduction to Logic and Set Theory”, which the
students had taken during the preceding semester. The course in logic and set theory was a
short introduction referring to boolean operation on sets. It also employed Mizar as a tool to verify
the correctness of reasoning. However its setting (30 hours of lecture, 15 hours of theoretical
exercise classes, and 15 hours of laboratory classes) proved insufficient in making the students
fluent users of the system. Still, the students attending the FM course were acquainted with
basic Mizar proof constructions and selected proving techniques. Their knowledge was sufficient
for understanding simple proofs as well as carrying out proofs of selected facts from set theory
and relation theory by themselves.

2.2 Aims and the Domains of Mathematics Used in the Course

The main goals of the course were as follows:

– extending students’ deduction skills by selecting exercises within the scope of the prese-
lected areas of mathematics requiring the use of advanced proof techniques,
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– teaching a selected mathematical theory presented during the lecture, and
– presenting the range of techniques used in formalization of mathematics.

Following the experience of past years, we have found that uninterpreted predicate cal-
culus is not suitable for didactics. Students simply prefer working with interpreted theories. It is
because only after mastering the essence of a given theory are the students able to solve a
large number of tasks within one field of mathematics. At the same time, the theory chosen for
the course should be rich enough to enable the presentation of all proof techniques.

Having in mind the above criteria and the university curriculum, we chose the theory of
binary relations as the base of our FM course. The theory is sufficiently rich, even when the
material for the exercises was notably restricted. The restriction was due to the realization of
one of our main aims, namely, concentrating on teaching students various proof techniques
which include:

– proofs by definitional expansion,
– conditional proof,
– proofs by “reductio ad absurdum” – a special kind of conditional proof in Mizar,
– proofs “per cases”,
– proofs of existential statements.

To achieve this we used a set of specially prepared environments: RELATION, RELAT_AB and
ENUMSET (the content of these environments is described in detail in 2.3).

The first environment was used to introduce relation theory, i.e., to present to students ba-
sic notions and definitions. It allowed for practicing several relation properties (e.g., symmetry,
transitivity, reflexivity, etc.). The notions, definitions, and theorems included in two other envi-
ronments were designed to extend students’ knowledge on relation theory. They formed the
basis for constructing proofs which use more complex techniques and proofs requiring creating
counterexamples.

Apart from the relation theory, the course also included:

– set theory with the scheme of separation and
– natural number theory with the scheme of induction.

To enable working within these fields of mathematics, another two environments had been
prepared (SEPARATE and INDUCT). However, they were not integrated with the previous ones.
The above were included to the course program to meet requirements imposed by the university
curriculum.

2.3 Some Technical Issues of the Course

The final didactic results of a computer–aided course like FM to a great extent rely on
technical issues and earlier preparation. Being aware of this, a work meeting of the whole team
involved in this experimental course was organized once a week. It allowed for anticipating
selected problems and working out an effective teaching methodology. In many aspects these
meetings gave the participants new insight into some aspects of teaching mathematics using
Mizar.

The main question to cope with at the very beginning was whether the students should
work on the whole MML repository or only on a part of it. In one discussion, it was decided that
getting to work with the whole database would have been too troublesome for the students. In
the result, it would have made using Mizar and fulfilling the aims quite complicated. Searching
for suitable information in the whole database, even if the reference to source articles had been
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given directly, could have appeared too complicated and time–consuming for the students. As a
result, a decision was made to prepare special Mizar environments for all the notions presented
during lectures, based on selected parts of MML. Consequently, five new environments were
created:

– RELATION – unordered pairs of sets, relations, empty relation, inverse relations, various
operations on relations (union, intersection, difference, symmetric difference, composition),
inclusion, equality, and selected properties of relations (symmetry, asymmetry, antisymme-
try, irreflexivity),

– RELAT_AB – domains and co-domains, images and inverse images of a set, relations on two
sets, identity relations, Cartesian products, and selected properties of relations (reflexivity,
weak connectedness, and connectedness),

– ENUMSET – singletons, ordered pairs, inclusion and separation of sets, operations on sets
(union, intersection, difference, symmetric difference), and the empty set,

– SEPARATE – the scheme of separation, definitional theorems of the union and intersection
of sets and the power set,

– INDUCT – the properties of the successor operator, the scheme of induction.

The first three environments were created successively on top of previous ones. The advantages
of such an approach were the following:

– students could get familiar with more advanced mathematical notions step by step,
– teachers could prepare a comprehensive set of tasks for subsequent classes.

The second problem which appeared at the beginning of this didactic experiment was the
proper choice of software for the students, i.e., a text editor to write their answers with and a
version of the Mizar system to verify the results. GNU Emacs was chosen as the best editor
for this purpose, since J. Urban’s MizarMode for Emacs ([10]) (with a web–accessible manual)
offered the students a complete user–friendly interface to the Mizar system. Because of the
steady development of the Mizar system, it also required some thought about which of the
system versions to use. Finally, the choice was made to employ version 7.0.02.

Another important decision was to use the Internet to facilitate the classes. Using the
software prepared specially for the course by A. Naumowicz, students were able to download
new environments for subsequent classes and store the results of their work after each class
to individual accounts on a server. This technique allowed for successive control over students’
progress and provided a good source for statistics.

During the course, three scored achievement tests were conducted. The scores con-
tributed to each student’s final grade as 30 – 30 – 40 per cent. The test routine was slightly
more automatized than that of an ordinary class:

1. students had to log into their web–accounts, while a special program on the server gener-
ated an individual set of tasks to solve,

2. after downloading the tasks (and a new environment if needed) students tried to solve them
on their computers,

3. after finishing their work, students uploaded their results on the server.

All students’ submissions were later verified by the Mizar system and checked by the
teacher. A task was assessed as solved correctly when the Mizar verifier reported no errors.
The following scoring scheme was used: 0 points – any error appeared, 3 points (4 points in the
last test) – no errors. The points collected by each students were used later to give a final grade
from 2 (unsatisfactory) to 5 (very good). Mark statistics are given below in Table 1.



MIZAR AS A TOOL FOR TEACHING MATHEMATICS 39

Table 1. Statistics of marks

Points Marks Number of students

0 - 25 2 7
26 - 30 3 11
31 - 35 3.5 7
36 - 40 4 19
41 - 45 4.5 8
46 - 50 5 5

2.4 Examples of Students Tasks

It seems that selecting the binary relation theory as a basis for the FM course was a
good choice. Indeed, it allowed students to practice most of the proving techniques and solve a
considerable number of tasks during the course.

The students’ task was to prove from 1 to 5 theorems during each class (depending on
the level of complexity). For 15 classes, about 140 theorems had been prepared in total. Most
of them concerned the first three environments. However, not all of these theorems were proved
by all students. In fact, an average student proved about 55 theorems.

To illustrate the level of complexity, we recall some examples of theorems which students
had to prove during the course (Table 2). We also present two examples of theorems with proofs
in Table 3.

3. Conclusions

The data collected during the course allows us to draw some conclusions about the effects
of our teaching, and to analyze the biggest sources of problems and ways of eliminating them for
planning similar course. In our minds, the overall didactic result of this experiment was positive.
The average grade was close to 4 (on a scale of 2 – 5). Undoubtedly, this effect was caused by
the following factors:

– individual students’ work was under the control of the teacher,
– a comprehensive set of relatively easy tasks allowed students to get some satisfaction from

solving several exercises, and at the same time gave them a chance to acquire the mathe-
matical content of the lectures,

– the ability of individuals to work at home (controlled by the Mizar system) enabled more
intensive training in the art of proving.

Apparently, the biggest problems in students’ work concerned the errors reported by Mizar
in their proofs. Students did not pay enough attention to the comments flagged by the system.
Some students seemed to not understand them at all or very often misinterpreted them. Even
worse, they did not report these problems to the teacher which significantly slowed down the
process of proving in class. Therefore, it seems that to minimize the problem the sets of tasks
could be enriched with exercises based on individual recognizing and improving errors in spe-
cially prepared erroneous proof texts.

Another set of exercises of particular interest should be based on constructing only the
skeletons of proofs (correct solutions can contain only errors 4 or 1). This is because efficient
proving absolutely requires the knowledge of what proof strategy can be used in a given context,
what assumptions can be made, and, finally, what the current goal of reasoning (thesis) is. Many
of the students involved in our course did not have this skill developed enough.
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Table 2. Some examples of the students’ tasks

Examples
property of relation for P,R being Relation st P c= R & R is irreflexive

holds P is irreflexive;

for P being Relation holds
P is transitive implies P~ is transitive;

for X being set, R being Relation of X,X
st R is connected holds R is weakly_connected &

R is reflexive;

“per cases” for R being Relation holds
dom R = {} or rng R = {} implies R = {};

for R,S being Relation holds R~ \/ S~ c= (R \/ S)~;

counterexamples ex R,S being Relation st R is asymmetric &
S is asymmetric & not R*S is asymmetric;

ex R,S being Relation st R is irreflexive &
S is irreflexive & not R*S is irreflexive;

scheme of separation for x being set, ex A being set
st for y being set holds y in A iff y = x;

for A,B being set ex C being set
st for x being set holds x in C iff x in A & x in B;

scheme of induction for i,j,k being natural number
holds i*(j+k) = i*j + i*k;

for i,j,k being natural number
holds i+k = j+k implies i = j;

Other conclusions and solutions:

1. Modifying, to a certain extent, the program content or adding new elements (paying special
attention to the parts of the material which, when acquired to an unsatisfactory degree,
result in students’ ineffective work during classes).

2. Changing the order of introducing new environments in subsequent classes, for example,
perhaps starting in the two last and going to binary relation theory after that.

3. At the very beginning obliging students to get familiar with
– the chosen Mizar syntax,
– the editor used during classes.

4. Introducing automatically generated sets of exercises for each class to make students’ work
more independent and disable cheating in class by “rewriting” neighbour’s work.

5. Motivating students to do home work assignments and working out ways to assess them.

4. Plans and Future Work

The university curriculum planned for the next year contains two computer–aided subjects
based on Mizar: “Introduction to Mathematics” and “Formalization of Mathematics”. Both these
courses will be obligatory for first–year computer science students at UwB, the former conducted
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Table 3. Examples of theorems with proofs

reserve P,R,S,T for Relation;
reserve x,y,z for set;

P is symmetric & R is symmetric implies P\/R is symmetric
proof

assume
A1: P is symmetric & R is symmetric;

let x,y;
assume [x,y] in P\/R;
then [x,y] in P or [x,y] in R by RELATION:4;
then [y,x] in P or [y,x] in R by A1,RELATION:def 12;
hence thesis by RELATION:4;

end;

ex R,S,T st R*(S/\T)<>(R*S)/\(R*T)
proof

reconsider R={[0,1],[0,2]} as Relation by RELATION:9;
reconsider S={[1,3]}, T={[2,3]} as Relation by RELATION:8;
take R,S,T;

A1: S/\T={}
proof

assume S/\T<>{};
then consider x,y such that

B1: [x,y] in (S/\T) by RELATION:def 3;
[x,y] in S & [x,y] in T by B1,RELATION:5;
then [x,y]=[1,3] & [x,y]=[2,3] by ENUMSET:def 1;
hence contradiction by ENUMSET:2;

end;
A2: R*(S/\T)= {} by RELATION:10, A1;
A3: [0,1] in R by ENUMSET:def 2;

[1,3] in S by ENUMSET:def 1; then
A4: [0,3] in R*S by RELATION:3,A3;
A5: [0,2] in R by ENUMSET:def 2;

[2,3] in T by ENUMSET:def 1;
then [0,3] in R*T by RELATION:3,A5;
then [0,3] in (R*S)/\(R*T) by A4,RELATION:5;
hence R*(S/\T)<> (R*S)/\(R*T) by A2,RELATION: 1;

end;

in the autumn semester, the latter in the spring semester. The “Introduction to Mathematics”
course will also be run in parallel for all first–year mathematics students. The time setting of
each course is as follow: 30 hours of lecture + 30 hours of laboratory classes. According to this
new time arrangement, the content of the first course will include:

– all the material from both semesters of the previous academic year, and
– extra tasks which we think should be included in the program of the course, but were not

completely realized the previous year.

We plan to achieve this by a proper choice of exercises and improving class organization, and
also students’ individual work based on the experience they get in class. This change, we be-
lieve, should improve the effectiveness of students’ work.

Some parts of the mathematical content of classes will be revised. We would like to in-
clude also more advanced fields of mathematics together with more complicated mathematical
constructs, e.g., structures.
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In the long run, we intend to create an integral CAI approach for university students. Our
idea is based on distinguishing three stages of instruction, each stage with a different level:

– Freshmen level. On this level we propose teaching the basics of the system, which will be
used and teaching – how to prove. The materials used in this level should be limited by the
study programme.

– Intermediate level. This level refers to course-ware for selected fields of mathematics. The
teacher should be able to select parts of mathematics which are best for this educational
process.

– Research level. Tools of computer based e–learning mathematics should be applied to doc-
ument students’ own work up to the level of PhD thesis.

We expect to obtain in this way a systematic approach to computer–aided instruction
employing the Mizar system (the system used for teaching purposes will be further used, e.g.,
for doing research). We believe that the use of the system will actually facilitate the process of
teaching mathematics. But, still the open problem is how many courses should be processed in
this way.

However we hope that mathematics practice will become more egalitarian ([2]) for our
students.
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Abstract – We review the general model of a computer as defined in the Mizar system. The main
emphasis is on specializing and using this model to formulate algorithms and prove their correctness.
We give examples for a concrete machine over the integers derived from the general model. Further
development of this model – especially towards the complexity of algorithms – is discussed.

1. Introduction

The development of the Mizar system [Miz04] started 30 years ago with the proposition of
a formal language intended to match mathematical vernacular. The initial goal of this language
– also called Mizar [AT78] – was not to write or check mathematical proofs but rather to assist
mathematicians in writing and preparing their papers. Since then, however, Mizar has evolved
into a proof checker [WWW] with the largest known repository of formally verified mathematical
knowledge covering a number of topics such as analysis, algebra, topology, graph theory, cat-
egory theory, and others. The most ambiguous projects have been the formalization of a text
book on continuous lattices [CCL80] and the formalization of Jordan’s curve theorem [CJ87].

Not widely known outside the Mizar community, however, are the efforts concerning pro-
grams and program verification in Mizar. Beginning in the early 90’s of the last century a theory
of abstract computers has been developed and formalized in Mizar. The basic Mizar model of
a computer [NT92] is quite general giving a conceptual framework in which computations take
place. On top of this a number of so-called macro instructions resembling the structure of famil-
iar procedural programming languages has been introduced and used to show the correctness
of several algorithms, e.g., sorting algorithms.

In this paper we give an overview of abstract computers and their algorithms as defined
in Mizar. Based on the general abstract computer, we discuss the possibilities of specializing
this model into different – concrete and generic – machines. After that we concentrate on the
SCM-FSA machine [TNR96], a ”Simple Concrete Model” of a computer over the integers. We
present the mechanism of macro instructions which makes it possible to formulate algorithms
for this machine in a programming language fashion. Finally we consider the question of how
to describe and prove the complexity of algorithms. The basics of complexity theory have been
formalized in Mizar [KRS01b], however they have not yet been applied to algorithms for abstract
computers.

2. The Mathematical Model of a CPU

The basic model of a computer has been defined in a quite general way [NT92]. It does not
resemble a special kind of programming language nor even a particular kind of machine. The
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idea was to capture the general structure of computations on a machine in this way to provide a
framework which can be instantiated to realize different models of computation. Consequently,
the Mizar computer in fact models a central processing unit by introducing among others the
concept of instructions and an instruction counter. This means that memory and memory man-
agement is explicitly addressed. Here is the definition of the structure AMI-Struct [NT92].

definition let N be set;
struct (1-sorted) AMI-Struct over N

(# carrier -> set,
Instruction-Counter -> Element of the carrier,
Instruction-Locations -> Subset of the carrier,
Instruction-Codes -> non empty set,
Instructions -> non empty Subset of

[:the Instruction-Codes,((union N) \/ the carrier)*:],
Object-Kind -> Function of the carrier,

N \/ {the Instructions,the Instruction-Locations},
Execution -> Function of the Instructions,

Funcs(product the Object-Kind, product the Object-Kind) #);
end;

The carrier plays the role of memory and the set N gives the data that can be stored within it.
Note that both the instruction counter and the locations of instructions are placed in the same
memory. The functor Object-Kind indicates which kind of information – data or instructions
– can be stored in a given memory location. The state of a computer is thus a function from
the memory – the carrier – which respects these limitations and is hence an element of
product Object-Kind. Finally, an instruction is given by an instruction code and a data or
memory element. Thus, for example [J,<*a*>] can be read as the instruction “jump to a”, i.e.,
the instruction counter is set to a. The interpretation of an instruction, however, is not fixed.
Its meaning is given by the functor Execution which maps each instruction to a function from
states to states.

This definition just establishes the basic concepts of a central processing unit and thus
does not give a machine with the usual expected properties. Such properties – if desired – are
enforced in a second step using Mizar attributes. A natural restriction, for example, is that only
instruction locations can be put into the instruction counter. As a second example, note that in
principle the execution of an instruction can change given program by overwriting the value of
an instruction location. A machine, in which this does not occur, is called steady programmed.

Note also that the memory is an unordered set, which means in particular that it is not
possible to speak of the k-th instruction (location) of a machine. To overcome this, an order-
ing of instruction locations has been defined in [TRK01]. The ordering is given by a sequence
of instruction locations that can be put into the instruction counter during its execution. A ma-
chine in which there exists a bijection between the natural numbers and the instruction locations
respecting this order is called a standard machine.

In addition, parameterization by the set N makes it possible to consider special purpose
machines: N gives the data that can be stored, so one could for example define a machine
storing integer numbers or finite sequences of integers (the SCM and SCM-FSA computer re-
spectively, see [NT93,TNR96]). Note that by instantiating the parameter N operations of the data
also become available, in our example addition of integer numbers or concatenating finite se-
quences. These operations can be considered as the primitives of the machine and are used
when defining the functor Execution, which gives the effect of the instructions. It is even pos-
sible to define generic machines that work over arbitrary algebraic structures: N is instantiated
with the (algebraic) structure – realized in Mizar by structure definitions. Then, the elements of
the structure become the data and the operations of the structure become the primitives of the



COMPUTERS AND ALGORITHMS IN MIZAR 45

machine. For example an SCM-Ring machine working over arbitrary rings has been defined in
[Kor98].

Programming such a machine is not an easy task, it is basically the same as programming
in an assembler language. An obvious goal then is to extend the model by introducing higher-
level programming constructs that resemble ordinary programming languages. This has been
done for the SCM-FSA-machine [TNR96], an extension of the SCM-computer over the integers,
which in addition allows for the storing of finite sequences of integers.

SCM, SCM-FSA and SCM-Ring are standard in the sense mentioned above. But, obvi-
ously, not all machines that can be defined based on AMI-Struct must be standard. An example
is the “Small Computer Model with Push-Down Stack” (SCMPDS) defined in [Chen99b,Chen99c].
Here shifting by a fixed number of locations forward or backward is allowed.

3. Macros

To facilitate the writing of programs and algorithms and making them more readable (more
similar to programs written in languages like Pascal, C, etc.) a number of macros have been
introduced in MML. They allow for the writing of programs in terms of Mizar terms. In this section
we present two different definitions of macros and discuss the impact of these definitions on how
macros are composed.

3.1 The General Definition

As a very basic definition of a macro one can take the finite partial state of a computer
such that the domain of it is a subset of instruction locations. In fact, it has been done in this way
in MML, but one more condition has been added. Because it was done for SCM-FSA [TNA97],
and because the instruction locations of SCM-FSA are constituted by natural odd numbers the
authors decided to assume that a macro must be initial, meaning that a macro must occupy
the contiguous part of the memory starting from the first location. Having such a condition one
can assume that, when a macro is executed, we can (must) always start the execution from the
first instruction location. We do not put any conditions on the structure of the macro. Then, the
composition of two macros (let’s say f and g) can be done in the following steps [TN96a,TN96b]:

– incrementation of all jumps of g by the length of f ,
– shift of incremented g by the length of f ,
– change of all halts of f by jumps to the first location of incremented and shifted g,

– concatenation of new f with new g.

3.2 A More Specific Definition

From some points of view, the previous definition of a macro is not convenient. Why? When
one wants to combine two macros, one must replace all halts of the first macro by jumps to the
beginning location of the second one. Therefore it was decided to introduce a new definition of
a macro, which is more suitable for concatenation. Namely, authors added the condition that a
macro must be finished by halt instruction, and only one halt instruction is allowed, in contrast
to the previous definition [TRK01]. Of course, this definition is more restrictive than the original
one, but to compose two macros it is enough to remove the last instruction of the first macro
and concatenate the second one, instead of changing all halts by jumps. Then, the composition
of two macros (let’s say f and g) can be done in the following steps [Kor01]:
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– incrementation of all jumps of g by the length of f minus 1,
– shift of incremented g by the length of f minus 1,
– remove of the last instruction of f ,
– concatenation of new f with new g.

The shortness of the second method of composition is clear in the case when one con-
catenates macro instructions made of one “non halt” and one “halt” instruction. Table 1 presents
the composition of four such macro instructions. Following the first method of concatenation we
obtain a macroinstruction containing 3 superfluous jumps as a result. They do not appear in the
case of the second definition. (In Table 1, the notion il.n stands for the n-th instruction location,
and dl.n for the n-th data location.)

Table 1. An example of the concatenation of macro instructions

general
definition

specific
definition

il.n M1 M2 M3 M4 M1;M2;M3;M4 M1;M2;M3;M4
il.0 dl.1:=dl.0 dl.2:=dl.0 dl.3:=dl.0 dl.4:=dl.0 dl.1:=dl.0 dl.1:=dl.0
il.1 halt halt halt halt goto il.2 dl.2:=dl.0
il.2 dl.2:=dl.0 dl.3:=dl.0
il.3 goto il.4 dl.4:=dl.0
il.4 dl.3:=dl.0 halt
il.5 goto il.6
il.6 dl.4:=dl.0
il.7 halt

3.3 Examples of Macros

There is a number of macros already introduced in MML. We present macros defined only
for SCM-FSA [Asa97a,Asa97b,Asa97c]. There are macros in the sense of the general definition,
but not always in the sense of the second definition (not all of them end by halt).

1. Unconditional jump:

definition
let l be Instruction-Location of SCM+FSA;
func Goto l -> Macro-Instruction equals :: SCMFSA8A:def 2
insloc 0 .--> goto l;

end;

2. Conditional macro:

definition
let a be Int-Location;
let I, J be Macro-Instruction;
func if=0(a,I,J) -> Macro-Instruction equals :: SCMFSA8B:def 1
a =0_goto insloc (card J + 3) ’;’ J ’;’ Goto insloc (card I + 1) ’;’

I ’;’ SCM+FSA-Stop;
end;

3. The below repeats a times I :
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definition
let a be Int-Location;
let I be Macro-Instruction;
func Times(a,I) -> Macro-Instruction equals :: SCMFSA8C:def 5
if>0(a,loop if=0(a,Goto insloc 2,I ’;’ SubFrom(a,intloc 0)),

SCM+FSA-Stop);
end;

4. Algorithms in Mizar

Development of the theory of computers, especially the theory of macro instructions in
MML, started and it is being still continued with deep confidence that such computers will be
(are) suitable for the verification of algorithms. A typical way of saying that an algorithm is correct
relies on the comparison of the algorithm with a function that describes the semantics of the
algorithm. The comparison should be done in terms of the predicate computes [NT92], defined
as:

definition
let N be with_non-empty_elements set;
let S be realistic halting IC-Ins-separated definite

(non empty non void AMI-Struct over N);
let p be FinPartState of S, F be Function;
pred p computes F means :: AMI_1:def 29
for x being set st x in dom F ex s being FinPartState of S st x = s &
p +* s is pre-program of S & F.s c= Result(p +* s);

end;

The function mentioned above is usually a partial function from the sets of all finite partial states
to the sets of all finite partial states of the computer such that elements of the domain are
related to inputs to the algorithm and elements of the codomain to results of the algorithm.
What is important is that it is not necessary to define a function for each algorithm. If different
algorithms solve exactly the same problem, it means that they compute the same function.

As an example let us take into account the Euclidean algorithm defined and verified in
[TN93]. The algorithm is just the assignment of appropriate instructions to the consecutive in-
struction locations.

definition
func Euclide-Algorithm -> programmed FinPartState of SCM

equals :: AMI_4:def 1
(il.0 .--> (dl.2 := dl.1)) +*

((il.1 .--> Divide(dl.0,dl.1)) +*
((il.2 .--> (dl.0 := dl.2)) +*
((il.3 .--> (dl.1 >0_goto il.0)) +*
(il.4 .--> halt SCM))));

end;

The corresponding function can be defined as:

definition
func Euclide-Function -> PartFunc of FinPartSt SCM, FinPartSt SCM

means :: AMI_4:def 2
for p, q being FinPartState of SCM holds [p,q] in it
iff ex x, y being Integer st x > 0 & y > 0 &
p = (dl.0,dl.1) --> (x,y) & q = dl.0 .--> (x gcd y);

end;
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It assigns partial states q of SCM that store the result (x gcd y) to relevant partial states p
containing inputs (x,y).

A more advanced algorithm that has already been defined and verified using Mizar is
bubble sorting of a finite sequence of numbers [CN98]. It involves macros in its body and looks
like:

definition
set a0 = intloc 0, a1 = intloc 1, a2 = intloc 2, a3 = intloc 3;
set a4 = intloc 4, a5 = intloc 5, a6 = intloc 6;
set initializeWorkMem =

(a2:=a0) ’;’ (a3:=a0) ’;’ (a4:=a0) ’;’ (a5:=a0) ’;’ (a6:=a0);
let f be FinSeq-Location;
func bubble-sort f -> Macro-Instruction equals :: SCMBSORT:def 1

initializeWorkMem ’;’ (a1:=len f) ’;’
Times(a1, (a2:=a1) ’;’ SubFrom(a2,a0) ’;’ (a3:=len f) ’;’

Times(a2, (a4:=a3) ’;’ SubFrom(a3,a0) ’;’
(a5:=(f,a3)) ’;’ (a6:=(f,a4)) ’;’ SubFrom(a6,a5) ’;’
if>0(a6, (a6:=(f,a4)) ’;’ ((f,a3):=a6) ’;’ ((f,a4):=a5),

SCM+FSA-Stop)));
end;

To verify its correctness the following function has been introduced. This function assigns partial
states q containing sorted sequences u to partial states p containing original sequences t.

definition
func Sorting-Function -> PartFunc of FinPartSt SCM+FSA,FinPartSt SCM+FSA

means :: SCMBSORT:def 3
for p, q being FinPartState of SCM+FSA holds [p,q] in it
iff ex t being FinSequence of INT, u being FinSequence of REAL
st t,u are_fiberwise_equipotent & u is FinSequence of INT &

u is non-increasing & p = fsloc 0 .--> t & q = fsloc 0 .--> u;
end;

We close this section with a list of other algorithms included in MML:

– SCM
• Fibonacci numbers – FIB_FUSC:def 1 ([BR93b])
• computing of nominators and denominators of all rationals –

FIB_FUSC:def 3 ([BR93b])
– SCM-FSA

• insertion sort algorithm – SCMISORT:def 2 ([Chen99a])
– SCMPDS

• quick sort algorithm – SCPQSORT:def 2 ([Chen01c])
• insertion sort algorithm – SCPISORT:def 2 ([Chen01b])
• greatest common divisor using subtraction – SCPINVAR:def 4

([Chen01d])
• greatest common divisor using recursion – SCMP_GCD:def 4

([Chen01a])
• Fibonacci sequence – SCPINVAR:def 2 ([Chen01d])

5. Outlook: Complexity of Algorithms

Formalizing the complexity of algorithms on a machine is a complicated task. One needs
a formalization of both the theoretical basis of complexity and a notion that connects formalized
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algorithms with this basis. The usual approach is to define step counting functions where often
not all but only the steps of main interest – e.g., multiplications or comparisons – are considered.

The beginnings of complexity theory has already been formalized in Mizar [KRS01a,KRS01b].
Here the basic notations such as domination and complexity classes are introduced. In addition,
a number of examples and problems from a textbook have been addressed. Thus [KRS01a,KRS01b]
give a framework for defining the complexity of algorithms. This framework, however, has not
yet been applied to the description of the complexity of algorithms. In the following, we briefly
outline how this can be done.

Mizar computers provide a number of possible ”one-step” operations on states, from which
programs, that is algorithms, are built. It is therefore natural to consider sequences of execution
steps to capture the length of a computation. In [NT92] the concept of a computation sequence
– to identify halting computations – has already been introduced. It was defined using a functor
Following computing the immediate successor of a state s. Thus Computation s is the se-
quence of states the machine is running through when initialized with state s. Using this functor
it is now straightforward to define a step function, that counts the number of executions of the
machine beginning with a state s [BR93a]. CurInstr gives the instruction of a state, i,.e., the
instruction to be executed next.

definition
let N be with_non-empty_elements set;
let S be halting IC-Ins-separated definite

(non empty non void AMI-Struct over N);
let s be State of S such that s is halting;
func Complexity s -> Nat means :: SCM_1:def 2
CurInstr((Computation s).it) = halt S &
for k being Nat

st CurInstr((Computation s).k) = halt S holds it <= k;
end;

Note that a computation is in principle infinite. Therefore, the attribute halting describes an
instruction that does not change a state is used to indicate the ”end” of a computation. Using this
definition it has been proved, for example, that the SCM-program computing Fibonacci numbers
mentioned in the last section makes 6 ∗ N− 2 steps (e.g., Complexity s = 6 * N - 2) if the
input N is greater than 0.

The functor can be easily modified to count only the execution steps that involve prim-
itive operations given by the parameter N. This means basically summing up the elements in
Computation s with a certain instruction code. Counting functions for only one operation such
as multiplication or comparison can be constructed analogously. Thus based on the general
machine model defined in Mizar, it is possible to define step-counting and complexity functions
following the literature.

6. Conclusion

We have presented the general computing machine defined in Mizar. The macro mecha-
nism makes it possible to use this machine to formulate algorithms and prove them correct by
showing which function the algorithm computes. In principle, this approach works for arbitrary
programs though it seems hard to apply it to algorithms occurring in everyday life. We believe,
however, that this approach is suitable for formalizing the principles of algorithms – as presented
in textbooks on this topic for example – in order to store them in a mathematical repository.

The development of a complexity theory for algorithms as mentioned above is still in its
beginning phases. The complexity function presented in [BR93a], for example, only considers
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a single state s. To describe the complexity of algorithms it should be generalized to a function
from all states of a machine S – or some kind of input for S.3 To summarize, the approach
formalized so far has still to be extended and worked out in order to become suitable for proving
the complexity of algorithms.
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Abstract – When thinking of various systems for formalizing mathematics and databases associ-
ated with them, one may question whether a given system is “robust” and what criteria may enable
us to make such a statement. This issue may be considered quite differently depending on the sys-
tem being examined. The work presented here concerns the MIZAR system.
Statements in MIZAR can be justified by providing a list of references yielding their correctness. This
paper describes some experiments testing the robustness of the MIZAR system which consist of
modifying lists of references (through altering their order – testing permutability, or extending them
with extra references – testing monotonicity).
After implementing suitable programs and performing numerous experiments it turned out that there
were cases in which the system did not fulfill the principle of permutability and monotonicity of refer-
ences. Initially, cases in which the justification of a statement was not accepted by the system after
the order of references was changed were observed in four MML articles. In another two articles
there were cases in which the system did not accept statements when a redundant reference had
been added. Consequently, these situations were analysed and, after applying suitable patches, the
problems were eliminated.
Repeating the same tests with updated versions of the system made it possible to find another prob-
lem connected with the monotonicity of references. The results of these experiments allow us to
claim that it is necessary to constantly check the system by repeating the described tests in order to
improve its robustness.

1. Motivation and Main Ideas

MIZAR [1], [7] is a system for computer-aided formalization of mathematics created by
Andrzej Trybulec. The beginning of this system dates back to the 1970s, but since that time the
system has been constantly modified, improved, and strengthened.

In parallel to the development of the system, a database of computer-checked mathemati-
cal knowledge, Mizar Mathematical Library (MML), has been developed since 1989. As with the
Mizar system, MML is also subject to constant reorganization, mainly aimed at making better
use of the information it contains.

The multitude of systems for formalizing mathematics forces us to compare and classify
them. Comparisons of this kind have already been done for some time taking into account
various factors. These can be the size of database, the power of logic, or the level of automation
offered by given systems among others. One such attempt is presented in Freek Wiedijk’s work
[15] showing proofs presented in different languages of the fact that the square root of 2 is
irrational.

The experience of researchers working with systems for formalizing mathematics indi-
cates that we need to think about the robustness of particular systems, i.e., to what extent they
are powerful and reliable in different untypical situations. Such situations may often occur during
normal usage.
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The object of this study is the MIZAR system ([11], [12]), which I have been using for
many years now. Over that period of time, I have encountered various untypical situations which
pushed me to a deeper analysis of this issue, which I generally call “studying robustness”.

One of the methods to justify the correctness of a statement in MIZAR is by providing a
list of references that should yield the statement. The order of references in such a list is not
strictly fixed, it depends on the user (there are programs altering the order according to given
criteria, e.g., a tool for sorting them alphabetically). In MIZAR, the order of references should
not be relevant to the acceptance of a sentence being proved. Similarly, adding references not
related to the justification of a sentence should not be significant. I call the above issues “testing
permutability of references” and “testing monotonicity of references”, respectively.

The need for the study of these issues becomes even more important as the authors
of articles do not always pay attention to untypical situations they find while working with the
system and do not always inform the authors of the system. Very often their goal is simply to
justify subsequent reasoning steps and even in situations where they observe that the system
works incorrectly, they try to solve their problem locally without notifying the system’s developers.

2. References in MIZAR

There are a couple of methods of justifying statements in MIZAR. In the simplest case,
statements are accepted by the system automatically as a result of applying rules of propo-
sitional calculus, built-in information taken from requirements imported by a given article, or
properties of definitions assigned to the used predicate or functor [9].

The second method of justifying the correctness of a sentence is obtained by providing a
formal proof of the given fact.

In the third case, if we can justify the statement in one step by referring to other facts,
we use the straightforward justification method. This means that after the statement we put
the keyword “by” and then list the labels of sentences to which we want to refer – statements
from the current article as well as external theorems. Additionally we may refer to the previous
statement putting the word “then” before the justified statement:

A1: sentence1;
A2: sentence2;
sentence3;
then sentence4 by A1,A2,XBOOLE_0:def 1;

In the above example, we refer to sentence1 and sentence2 through the labels
A1 and A2, respectively, and to sentence3 through the use of then and the definition of
the empty set XBOOLE_0:def 1. When we want to state the conclusion while referring to a
previous statement we use the word “hence” (the combination “then thus” is not allowed).

There are no rules imposed on the order of references in a straightforward justification, it
is up to the authors of the article. There is a utility program available which can be used to sort
them lexicographically. In MIZAR, the order of references should not matter for the acceptance
of a statement by the system. However, some users reported situations where it seemed to be
important, which proved that MIZAR was not free of such faults, hence not fully robust. This
confirmed the need to create software to test the entire MML in order to find similar problematic
cases.

Similar is the case of adding extra (redundant) references. Statements which are accepted
with a given list of references should also be accepted with an extended list, as it should not be
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relevant to the Verifier. Apparently, as in the case with permutability, users reported some facts
which contradicted this postulate.

3. Preparing MML for the Experiments with Delinker

To carry out experiments on the permutability of references the articles from MML had
to be specially prepared. The first problem to occur regarded linking to previous statements
using the keyword then or concluding with the word hence. A reference introduced by then
or hence is treated as the first reference in an inference step, but it cannot be simply moved
simply to other positions, so it cannot be permuted. Solving the problem required implementing
a program to replace all occurrences of then with references to the previous sentence and
put in the list as a first reference so as to not change the original order. In the case of linking
with hence, the keyword had to be replaced with the word thus, to preserve the conclusion.
Sometimes the previous statement had to be extra labeled, when there was no label in the
original text. To prevent conflicts, i.e., duplicating labels, it seemed the best solution to change all
label identifiers according to one naming scheme. A program, which I call Delinker (DELLINK)
inserts labels in every possible location and also changes the names of existing ones in the
following way: the names of labels are of the form Rx:, where the values of x are consecutive
numbers, starting from 1. Delinker also removes linking with then and changes hence into
thus, adding to the beginning of the list a reference to the last accessible label.

Another problematic situation appeared to be the occurrences of the word hereby,
which is a synonym to the phrase thus now. The problem was that a statement starting with
hereby can be referred to with then or hence, but it cannot be labeled because the place
of the label should be somewhere between thus and now. To cope with that, all occurrences
of hereby were replaced with thus now, inserting a label between them.

The same fragment of text from [5] before and after using Delinker is presented in the
following example.

Before running Delinker:

Lm3:
for x,A,B,C,D being set holds
x in A\/B\/C\/D iff x in A or x in B or x in C or x in D
proof
let x,A,B,C,D be set;
hereby assume x in A\/B\/C\/D;
then x in A\/B\/C or x in D by XBOOLE_0:def 2;
then x in A\/B or x in C or x in D by XBOOLE_0:def 2;
hence x in A or x in B or x in C or x in D

by XBOOLE_0:def 2;
end;
assume x in A or x in B or x in C or x in D;
then x in A\/B or x in C or x in D by XBOOLE_0:def 2;
then x in A\/B\/C or x in D by XBOOLE_0:def 2;
hence thesis by XBOOLE_0:def 2;
end;

After running Delinker:
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R5:
for x,A,B,C,D being set holds
x in A\/B\/C\/D iff x in A or x in B or x in C or x in D
proof
let x,A,B,C,D be set;
thus R6: now assume R7: x in A\/B\/C\/D;
R8: x in A\/B\/C or x in D by R7,XBOOLE_0:def 2;
R9: x in A\/B or x in C or x in D by R8,XBOOLE_0:def 2;
thus R10: x in A or x in B or x in C or x in D

by R9,XBOOLE_0:def 2;
end;
assume R11: x in A or x in B or x in C or x in D;
R12: x in A\/B or x in C or x in D

by R11,XBOOLE_0:def 2;
R13: x in A\/B\/C or x in D by R12,XBOOLE_0:def 2;
thus R14: thesis by R13,XBOOLE_0:def 2;
end;

4. Separator of Library References

Another problem to cope with before the proper experiment was the situation in which
the article’s author referred to more than one external theorem using the shortened form of
reference, e.g.:

by XBOOLE_1:2,3;

instead of

by XBOOLE_1:2,XBOOLE_1:3;

This example demonstrates references to the second and third theorems from MML article
XBOOLE_1. Originally in MIZAR only the full form was possible, so the name of the article had
to be repeated. For simplicity, the short form was introduced in which the name of the article
appears only once and after the colon numbers of referenced theorems are separated with
commas.

Using the short form does not allow for full permutation of references. We can either move
all of the combined references together to some other place in the list, or change the order only
within themselves. To eliminate this problem, it was enough to write a program which changed
all short forms into long ones, which I call Separator of Library References (SEPREF).

Separator of Library References together with Delinker prepared the database of MML
articles for the experiment with testing the permutability and monotonicity of references.

5. Software Testing the Permutability of References

Testing the influence of changing the order of references on the results of verifying MIZAR

texts required first implementing a program which would alter the order in every reference, and
then verifying the new text checking to see if it was still accepted by the system. To carry out the
experiment one would have to perform more than k! tests, where k is the maximal number of
references in one inference step. A program was written to estimate the number by counting and
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reporting the number of references in subsequent inference steps. It turned out that the greatest
value of k was 23 – in the article [14]. Therefore, to check all permutations one would need 23!
tests, which would take approximately 4∗1015 years (on a PC with 3 GHz, 2048 MB RAM). This
made me think of other ways to study the problem, at least partially, in a much shorter period of
time.

The best solution seemed to be writing a program that would generate a random order-
ing of references in each inference step, and then calling it repeatedly, while at the same time
checking the correctness. With this approach, there is a risk that some errors might not be dis-
covered, but with an increasing number of tests the probability of finding new errors converges
to zero.

The program PERMREF generates a random ordering of references in each inference
step and inserts them in this new order.

6. Software Testing the Monotonicity of References

Testing monotonicity consists of examining whether or not adding redundant references
influences the acceptance of statements by the MIZAR Verifier. To start this experiment I had
to answer three main questions: how many references should be added, what references, and
where should they appear.

It seems natural to add only one reference to a straightforward justification or to a state-
ment which is obvious to the system. Adding more references would increase the risk of over-
flowing some of the limits concerning references.

As to what concerns the kind of references to be added, again the best solution seemed
to be based on randomizing, deciding only on the range of values. One method could be to
use only references from the current proof block, or the whole current proof, or all accessi-
ble statements from the article, or even theorems from MML which are imported by the directive
theorems. The first or second approach would result in a lack of possibilities to choose from in
the case of short reasonings. Choosing statements from MML also does not appear to be inter-
esting because it would mostly give statements completely irrelevant to the justified sentence.
Therefore, I decided to choose one reference out of all accessible at that point of reasoning
within the same article.

Considering the place of inserting the new reference, there are three immediate solutions:
at the beginning of the list, at the end, or in a random place. The third option seems to somehow
disturb the regularity of inferences, being a special case of permuting. If there is no direct need to
use random ordering, I think, it should be avoided. In the case a changing of the order is needed,
one may use the program for adding references (MONOTONE) together with the permuting
program (PERMREF). Out of the two options, I decided to add randomly generated references
at the end of the list.

The program MONOTONE controls additionally whether the new reference is not already
on the list. Obviously, it also checks whether or not it is at all possible to find any additional
accessible references (in the case that there are no accessible references, the list remains
intact).

7. Results of the Experiment

After preparing the MML (using Delinker and Separator of Library References) I ran the
permuting program (PERMREF). After only four tests there appeared several articles which
were not fully accepted by the MIZAR Verifier, but subsequent tests did not result in finding
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more errors. The problems concerned the articles [8], [6], [13] and [10]. For example, in [6] the
problem looked as follows: T denotes a T0-topological space, where B is its basis, x, y and X
are arbitrary sets.

A1: X in Components(B);
A2: x in X by XBOOLE_0:def 1;
A3: y in X;

the following justification was accepted:

reconsider x1 = x, y1 = y as Element of the carrier of T
by A1,A2,A3;

After permuting – the justification was rejected:

reconsider x1 = x, y1 = y as Element of the carrier of T
by A3,A1,A2;

The problem was diagnosed and fixed in MIZAR ver. 6.1.14. distributed on November 9,
2002. It concerned the built-in procedure emulating the former theorem BOOLE:11which could
be written as follows:

for x,X,Y be set holds
x in X & X c= Y implies x in Y;

This frequently referenced theorem was built into the Checker to enable its use even
without a direct reference from the author. The tendency to incorporate such useful facts into the
Checker in an obvious way strengthens the system and allows for reducing simple background
reasoning and at the same time makes them clearer for a potential reader [9]. As the ultimate
goal, steps in a system of formalizing mathematics would be similar to those of traditional (pen
and paper) mathematics. However, the implementation of BOOLE:11 in some specific cases
resulted in true statements not being accepted by the Verifier. What is interesting here is the fact
that users of the system had not managed to create such a specific situation, and find the error,
for several years. This gives evidence to the fact that studying the robustness of systems for
formalizing mathematics is required, or even indispensable, to make them become more useful.

After fixing this problem I ran the experiment another 100 times with MIZAR ver. 6.3.07,
and did not find any errors.

Another experiment testing the monotonicity of references consisted in adding random
references at the end of each inference, based on MML prepared previously with Delinker. Here
also after several repetitions of the experiment there appeared two articles with errors: [4] and
[2]. For example, the problem in [4], using the notions below:

A,B -- transitive with_units (non empty AltCatStr)
C -- with_units (non empty AltCatStr)
F -- contravariant Functor of A,B
G -- contravariant Functor of B,C

looked as follows:

A1: G*F is Functor of A,C;
reconsider GF = G*F as Functor of A,C;
A2: GF is covariant;
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the following justification was accepted:

G*F is strict covariant Functor of A,C by A2;

After adding A1 – the justification was rejected:

G*F is strict covariant Functor of A,C by A2,A1;

The problem was fixed in MIZAR ver. 6.1.16. It concerned the procedure of rounding the
mother types in Equalizer. Equalizer is the part of the MIZAR Verifier responsible for equality
calculus. Its main role is to join equivalent terms in classes. After the Equalizer pass, Verifier
works not with single terms but classes of equal terms.

The experiment was then repeated 100 times to check whether the problem had been
solved. As expected, the procedure reported no errors.

The MIZAR system is continuously developed and it undergoes constant changes and
fixes, at the same time new concepts are implemented to strengthen its position among other
systems. Therefore it is worthwhile to repeat the experiments from time to time, whenever there
is a chance that new errors and problems may appear as a result of changes introduced. So,
after some time I decided to re-run the experiments with MIZAR ver. 6.3.07. I repeated testing
the permutability 500 times on the whole MML (to minimalise the risk of overlooking some
problematic situation). It took 25 days (on a PC with 3 GH and 2048 MB RAM) and no problems
were discovered. On the other hand, testing the monotonicity of references was repeated 100
times on the whole MML and showed numerous occurrences of error 4 in the article [3]. One
of the contexts is presented below. C denotes a category, S is a non empty subcategory of
C, r1,r2,q2,q3 are objects in C, p1,p2,p3 are objects in S, m1,m2 are arbitrary sets,
and finally q denotes a morphism of q2,q3 while r is a morphism of r1,r2; The theorem
ZFMISC_1:33 states that for any sets x1,x2,y1,y2 the following holds:

theorem :: ZFMISC_1:33
[x1,x2]=[y1,y2] implies x1=y1 & x2=y2;

A1: [p2,p3]=[q2,q3] & <^q2,q3^><>{} & <^q3,q2^><>{} & m1=q &
q is retraction;
A2: [p1,p2]=[r1,r2] & <^r1,r2^><>{} & <^r2,r1^><>{} & m2=r &
r is retraction;
A3: p2=q2;

The following justification was accepted:

reconsider m=q as Morphism of r2,q3 by A3,A2,ZFMISC_1:33;

After adding A1 – the justification was rejected:

reconsider m=q as Morphism of r2,q3 by A3,A2,ZFMISC_1:33,A1;

At the time of this writing, the error has not been fixed yet. The implementation team is
still working to fully diagnose and fix the problem.
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8. Problems for the Future

Testing the permutability and the monotonicity of references in MIZAR is only the begin-
ning of experiments with the immense issue of testing robustness of systems for formalizing
mathematics. The experiments must be repeated from time to time, because (as in the case
of testing the monotonicity presented above) quite unexpected results may appear after each
change in the implementation, especially when the system evolves very dynamically.

Other issues to be dealt with in the nearest future are finding and eliminating equivalent
statements, and then working out methods to delocalize and localize articles (moving state-
ments to the highest or lowest level of reasoning in an article). Combining delocalization with
searching for repeated statements may also be interesting, because it should, at least theo-
retically, give stronger results than without delocalization. Further tasks will be assigned after
finalizing the research presented here. Although in general the issue of robustness is immense
and cannot be fully solved, any system which undergoes such experiments has a chance to
become truly robust system.
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A Note on Translating Mizar Articles into OpenMath–Related
Formats
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Abstract – Due to its large library of mathematical content, Mizar has received attention as an
interesting system for mathematical knowledge representation. This raises interest of utilization of its
content by other systems (and vice versa). An effort on translation of Mizar articles to OMDoc format
is reported. Some reflections on the experiences and problems herewith are given.

1. Introduction

There have been already a lot of efforts to deal with (or manage) mathematical texts before
the young discipline of mathematical knowledge management (MKM, [JD01]) was founded. As
is typical for the field of computer research and practice, much was going on without respect
for compatibility (maybe not always without certain intentions). It is no surprise that systems
like Mizar has little or no connection to other systems. Hence translation issues come up in
the course of times for various reasons such as: usage of different strengths, comparability or
simply content exchange.

Mizar[WWW] has received strong attention within the MKM community. Texts written in
Mizar are close enough to common mathematical vernacular to be readable without much dif-
ficulties by mathematically educated people. Such properties cannot be seen as granted till
today — only for pure presentation systems which are not in focus here, though there are other
powerful systems around for checking mathematical or logical content. Consequently, the ques-
tion arises of how to get content from Mizar stuff somewhere else or vice versa. Basic knowledge
of Mizar will be assumed.

1.1 OpenMath

The desire of computational information exchange led to demands of unambiguous rep-
resentation of mathematical content. OpenMath ([OMS]) is an effort to fulfill such needs for the
field of mathematics. It is a language for the representation and communication of mathemat-
ics. Planned as a special purpose language for computer algebra systems, its development
resulted in one for mathematics in general and logics. Consequently, OpenMath can be used
for expressing formal mathematical objects appropriate for todays theorem provers and proof
checkers.

Mathematical symbols get defined in so called content dictionaries(CD). The OpenMath
society runs a list of CDs for various purposes. Moreover, it defines standards for OpenMath
(including the structure of OpenMath objects, encodings and content dictionaries).

MathML has a similar conceptual background with strong observance for WWW–usability
(coverage of the presentation issue); aside from some close connections with OpenMath (and
OMDoc) it is a W3C recommendation which is implemented in todays prominent browsers (e.g.,
Mozilla and Amaya).
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1.2 OMDoc

OMDoc (Open Markup Format for Mathematical Documents,[Ko00]) aims at flexible markup
for mathematical content beyond OpenMath. While OpenMath (and MathML) only care for spe-
cial formalizing of mathematical content, semantic flexibility is a fundamental issue where OM-
Doc goes beyond OpenMath and MathML. Some features of OMDoc:

– Semantical foundations are definable, thus giving the possibility of different underlying logic
systems.

– Presentation and content are separated (multiple presentations allowed).
– Formal (FMP) and informal (CMP) contents are distinguished. The first acts as the machine–

readable content.
– The core mathematical items are as usual — symbols, definitions, assertions, axioms and

proofs.
– Mathematical items carry metadata information (DublinCore).

FMP contains OpenMath objects. Yet FMP may be empty.
MBase[FK00] is a structured repository of OMDoc documents.

2. Method of Approach

The language Mizar is not really small for today’s customs (in [CG04],p.63: 93 keywords
and 150 productions). Restriction to abstracts saves about 20 keywords defined only for proofs.
Since the crucial problems are not bypassed through such a decision that seems a justifiable re-
striction for the first prototypes (and abstracts are covered already): proofs consist essentially of
formulas with justifications, the treatment of formulas has to be solved already within abstracts,
justifications are clearly unambiguous.
Thus the aim of translating a Mizar article is split into these successing sub–goals:

1. metadata generation
2. transformation of mathematical content structure
3. formula translation
4. (proof translation —

however that is some sort of replication of steps 2–3)

Furthermore a Mizar article is split into its tree structure down to atomic terms. Programming
is done in ML ([Er99]). The implementation used is OCaml ([CMP00]), yet the code uses only
Caml statements. Though the choice had less methodological reasons, one should not ignore
the fact that this implementation is a well developed full purpose language with a rather large
amount of (parsing) tools. MBase is also used as a testsuite for OMDoc files.

3. On the Translation

The content of MML contributions is scattered across more than one file (bibliography, vo-
cabulary and article). In some senses, that resembles the “old scientist’s” approach of keeping
different classes of content in different locations (be it just only different chapters in a book).
Nevertheless, programming engineers seem strongly opposed that view. They want files in
WYSIWYG–style with everything included in one file — the attitude behind XML (and OMDoc).
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3.1 Starting with Metadata

Vocabularies are needed only for processing articles and the bibliography does not inter-
fere with the content of an article hence that information may be merged into one file rather
straightforwardly. The few main issues:

1. Single Mizar articles should correspond with single OMDoc theories. Though that need not
be the case (each single Mizar text–item could be given its own theory or the whole MML
could be crunched into one theory). It seems to be the best complaisance for the authors of
articles.

2. Bibliographical data are obviously metadata in OMDoc with the exception of abstracts and
references. There is no appropriate DublinCore field for these things.

3. A Mizar vocabulary is not really needed with respect to content. Yet priority information shall
not be lost what justifies one direction (see table below). Since names of vocabularies do
not correspond in a standardized way to the names of articles, there is no proper correspon-
dence for a backwards direction.

With respect to the general picture above, the points can be summarized as follows:

Mizar entity OMDoc item
article ⇐⇒ theory

bibliography ⇐⇒ metadata of theory
vocabulary =⇒ symbol definitions (for Mizar definition items)

Priorities of functors is part of the information within vocabularies which is needed for
symbols. Such information is not available only from the article in question. Its relevance is not
only for further translation issues, but also for presentation (of the OMDoc translation, which is
no Mizar specific matter any more).

3.2 Diving into the Proper Text

Mizar is minimalistic in the sense that there are three main classes of mathematical “items”
(similar to informal mathematics): definitions, theorems and proofs. OMDoc reflects roughly this
distinction yet with refinement by attributes for elements. The general picture may be summa-
rized analogously to the table of the foregoing section:

Mizar item OMDoc item
environment =⇒ import/catalog elements

section
?⇐⇒ omgroup

definition ⇐⇒ definition
excl. cluster/registration =⇒ assertion

structure ⇐⇒ definition
scheme ⇐⇒ definition

redefinition ⇐⇒ alternative
theorem ⇐⇒ assertion

proof ⇐⇒ proof

Some remarks on that table:

1. OMDoc includes mechanisms for theory inheritance, yet not so fine–grained as Mizar.
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2. Mizar sections correspond intuitively with OMDoc omgroups because of their usability for
grouping inside theory elements. On the other hand, the sectioning in Mizar seems to be
used only for (journal) presentation what is not of much use for machine–oriented transla-
tion.

3. Modes as one of the definition items introduce new Mizar types. In a full translation, Mizar
types are a part of the formal content in definitions (also of new notions). These cannot
have fully–fledged definitions. One can follow [Ur03b] (p.204) and introduce extra defini-
tions — that point does not refer to first–order translations only. Preference should be given
to the first approach mentioned there. Since set–theoretic classes commensurate better the
common constructions of sorts (and types), especially if these are used for bounding of
quantifiers.

4. Clusters (now registrations) in Mizar are obviously theorems. Authors choose such clusters
if they think them to be of importance or of need. Yet not each existential assertion in OMDoc
should get a role as a cluster. At least, such practice will look very strange contrariwise to
the “common Mizar style”.

5. OMDoc allows definitions with recursive or implicit formulations (including proofs as parts of
definitions similar to Mizar schemes). Hence, there is no expressibility problem per se.
One should note that there are multiple proofs for each theorem allowed.

6. A less innocent topic concerns reconsiderations (in proofs). Since reconsiderations have to
be justified these could get sub-proofs or local lemmata (before the theorem in question).
These are quite often Mizar type changes which are tangent to the treatment of formal
content.

As yet structure is only concerned in such a way that context-free parsing would hardly find
any stumbling blocks. OMDoc allows for putting item blocks into CMP (commented mathematical
property) which is thought for informal text. Such content is not available (and not intended) for
mechanized communication. OpenMath objects may still be used inside, yet their relevance
rests only on presentation and as text. This is useful for similar text generation as the “Mizar
journal” [JFM]. In principle, the translation of Mizar articles to its JFM version could be stored
inside of CMPs in a “parallel” way.

3.3 Tackling Formal Content

The main interest into translations concerns formulas since these represent the formal
content of an article (so far TEX–content could be processed similarly). It is the place where
the problems of context sensitivity come into play. Formal content in OMDoc is represented
as OpenMath content: notions are indicated by references to its definitions (in other theories).
OpenMath CDs (content dictionaries) already exist for classical logics and basic mathematical
notions. Thus, the main problem is getting the references for the atomic parts of formulas — the
peculiar business of the Mizar parser. Because the same designators may be (and are) defined
differently in different Mizar articles, this can get rather tricky (as pointed out in [CG04], sect 4).
That and especially overloading are doubtlessly one of the charming properties of Mizar. In the
sense of [Ur03b] (sect.2.2) a Mizar article gives sight into the “pattern level”, but what is needed
is the “constructor level”.

If such things are not available things turn unfavorable. The WWW–abstracts already con-
tain references and can be helpful in this way — especially for Mizar independent tools (the
problem of proofs keeps open). Another source is a group of special files originally generated
by Bancerek for use by MML–Query. These contain (vital) information which is not available
by the MML–Query tool at now. With such files there is a possibility to translate single files (of
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MML) — without a labour expenditure similar to the reimplementation of the Mizar parser. The
only alternative would be some sort of bootstrapping — starting with the most basic articles and
ascending a hierarchy which is available from the environments.

Some further technical issues:

– The “naked” mathematical (formal) content itself is of interest — either by technical reasons
or by need of natural look. Mizar seems to be appealing due to somehow reflecting the use
of sorts in mathematical practice (yet without much care about the formal notion of sorts).
In these circumstances, there is not much lack of types, either.
Accordingly, a bunch of OMDoc files (used by Ωmega as example) make no use of its ability
in type representation.
Hence, translations need not take into account typed formal content in OMDoc. Still use of
the Mizar type information remains a topic, since Mizar types resemble sorts which means
a bounding of quantifiers. In addition to the remark on modes in the above subsection,
a set–theoretic approach for translation complies with such an analysis — though that is
contrariwise to Urban’s decision ([Ur03b]).

– In the above sense, mode definitions may be stated as introductions of non–empty classes
with certain properties.

– In the above sense, reconsiderations may be formulated via elementhood.
A type–oriented approach would need some extra formulation of axioms on (Mizar) types
inheritance. [Ba03] deals with properties on Mizar types. Such properties reflect the way
Mizar is working — this means additional axioms through its formalization.

– OMDoc prohibits ambiguity fundamentally. Overloading cannot be expressed directly. There
have to be different unique notions (maybe with the same commonname — the trivial name
in OMDoc) which have the same presentation — that amounts to the same look for a human
viewer but the machine–readable formal content is distinct. A justification for overloading is
human readability. Whether this reflects the intention of overloading sufficiently needs some
further considerations.

4. Discussion and Conclusion

Mathematical content cannot be analyzed without its context. Close connections between
semantical meaning and structuring characterize mathematically non–simple text. Such pecu-
liarities cannot be spirited away by translation. That requires for Mizar articles the same work
as the Mizar system in matters of parsing (yet parsing here cannot be the context–free ticket of
usual programming languages). Certain (“readability”) styles of writing Mizar articles can make
things easier — such restrictions would not really seem a deprivation since articles should be
“readable”. As mentioned in [CG04] third parties do not find open doors for translating Mizar
content. What has to be done first is more or less not only the business of Mizar itself, moreover
Mizar needs this before checking. This seems to be one of the central parts of Mizar to me. The
effort would result in some sort of reimplementation, and reinventing the wheel is not always
recommendable. Maybe a better solution is an interface with Mizar parser output which could
be the starting point for translations. It seems that [Ur03a] and [BR03] already build upon some
sort of forerunner(s) for such a task.
Especially [BK03] is based on such MML–Query–related tools. The authors have done some
partial translations from Mizar to OMDoc. Steps 2. and 3. of Section 2 are the main focus there.
Complete sentences or formula–expressions of text items are queried against an MML–Query–
related tool which produces a translation to OpenMath–format.
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As already mentioned the Mizar language is in a certain sense minimalistic: no lemmata,
propositions, subproofs (as notion, of course as iterations). Thus one needs only a proper subset
of markup languages like OMDoc. On the other hand there are some Mizar things which have
no (good) counterpart in OMDoc (environment, registration, e.g.) — and that counts for similar
markup languages, too. Hence, one can use only a proper subset of markup languages like
OMDoc — yet with more flexibility. It seems that smaller (or: lighter) markup languages could
ease the burden of cross–translating (for each side). That could give way for plainer insights into
the needs of mathematical markup.

4.1 Retranslations?

For practical reasons newer OMDoc versions allow for the inclusion of something anal-
ogous to verbatim in TEX, so that OMDoc databases (like MBase) do not parse content that
is specific for special theorem provers or checkers — and needed for retranslation purposes.
Elements for informal content would be rather impractical to handle. For a “backtranslation” of
unchanged articles some artificial things in OMDoc need to be done at the translation step —
with the hope that confusion has a very low possibility. To get the articles for an environment is
not really the problem (at least for MBase because of the inheritance mechanism). However, the
structuring of an environment can get tough. Due to combinatorial explosion, brute force seems
rather inadequate. There are no special metadata constructs in OMDoc (or MathML) available
for such purposes. It seems that mathematicians underestimate the role of metadata for guid-
ance — these are more than author information for example. Another good source of problems
are the already mentioned clusters and modes. In particular, modes are defined arbitrarily by an
author. New modes introduced have then to be recognized in the following text. Hence, method-
ology for (semi–)automated introduction of modes has to be based upon a mechanism with well
developed semantic capabilities — something that seems not to have satisfying solutions today.

Retranslation need not be seen only with respect to full articles — some remarks with
respect to parts of an article:

1. Predicate logic reasoning:
Mizar authors still need to work out proofs for tautologies which are not very complicated;
there are really good theorem provers around just for such issues.

2. Equation handling:
The Mizar checker is sometimes to tough and gives an unprovability error, if not necessary;
what surely ensures correctness is not always an author’s joy; there are rather good provers
around, too.

4.2 Conclusions and Further Work

Work on translations can give insight into differences between existing systems. Further-
more this can be used for a comparison of different approaches on special topics (as an example
there are different approaches to category theory in Mizar). For practical insights, the approach
of Urban [Ur03b] bears on theorem prover formats. Such formats are the result of evolvement,
why these have developed with needs and implementations. Usability for Mizar will be more
likely this way, especially if one expects some saving of tedious steps in Mizar, when an author
mainly simulates a predicate logic reasoner. Another aspect is that the Mizar developers do
not want to change a working system (at least not too much, which is an honourable attitude).
Efforts on retranslation open the possibility for inclusion of “foreign” trustable results without
endangering a well grown up system.
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OMDoc arose mainly of academic interest. One main aim behind it was the production of
a rich format for many notions of mathematics. That classifies it as SGML within mathematical
markup languages (do not take this analogue too literally — as expressibility does not go beyond
XML).
Such an isolation of construction seems to indicate a lack of interfaces for existing theorem
provers or checkers. At least there exist some for theorem provers of higher–order logic which
are of special interest for Mizar. One may not forget that OMDoc cares for representation of its
content, and MBase can be used as a search and exchange tool. Though the Mizar community
will have more interest in retranslations, it is a far way to go still. Restriction to predicate logic
reasoning (as mentioned above) could be an acceptable compromise at first.

Completion of Mizar–to–OMDoc–translation for abstracts has still to be developed to a
satisfiable state. There are some issues with more than one possibility of translation. So different
styles of translation might be followed. Retranslation has still to be surveyed. For being a very
(tedious) technical matter one can hope that translation issues give insights and clues on MKM
topics as design of systems as well as content representation, and that they can help in the
understanding of the crucial differences between systems or representation methods.
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Abstract – The goal of this work [WK] is to formalize Elements of Consumer Demand Theory in
the Mizar language. The theory is based on the book: "Elements of mathematical economy" by E.
Panek. This is not a direct formalization, but a generalization of the theory. In the formalization we
try to generalize the theory and fill recognized gaps.

1. Introduction

In this paper we describe how commodity space and preference relation can be formalized
in the Mizar system. This is the first article in Mizar related to this economic subject. Some
economic aspects were also formalized in Mizar by Krzysztof de Werszowec Rey [WR93]. Our
formalization introduces basic definitions and theorems, which can be used further for proving
more advanced theorems. We hope our article initiates a new branch in Mizar and will make
possible check economical models. We focus on the following elements of commodity space:
basket of commodities, basket neighborhood, indifference and preference relation.

2. Commodity Space

From among all available commodities on the market a consumer can pick a bundle of
them. This bundle is called a baskets of commodities and all of them are included in the com-
modity space. According to Panek, a commodity space is a subset X of ℜn

+ which contains all
available baskets of commodities equipped with distances between baskets. For baskets there
are also defined operations of addition and multiplication by non negative real numbers similar
to operations in vector spaces. Theories of metric spaces and vector spaces have been already
developed in Mizar and we decided to use them for our purpose. First we define the structure of
a vector space with a distance function (in Mizar: MetrVectStr) which merges VectSpStr
[KLM90] and MetrStruct [KLS90]. Then the structure of the commodity space is defined as
MetrVectStr with new field baskets which is a subset of the carrier as shown below.
The concept of Mizar structures is well described in [RT99].

definition
let F be 1-sorted;
struct (MetrVectStr over F) CommodityStr over F (#
carrier -> set,
baskets -> Subset of the carrier,
distance -> Function of [:the carrier,the carrier:],REAL,
add -> BinOp of the carrier,
Zero -> Element of the carrier,
lmult -> Function of [:the carrier of F,the carrier:],

Manuscript received August 22, 2004; revised October 18, 2004

67



68 KRZYSZTOF WOJSZKO AND ARTUR KUZYKA

the carrier
#);

end;

To define commodity space we introduce the attributes void,positive, and with_empty_basket,
which mean respectively that the set of baskets is empty, baskets are in “positive area”, and
empty basket (the Zero element) is in the set of baskets. In our general approach, it is impos-
sible to define positive area. We avoid it by defining positive by the condition that Zero is
the only basket whose opposite vector is also a basket.

definition
let C be non empty CommodityStr over F_Real;
attr C is positive means

for x being Element of C
st x in the baskets of C & -x in the baskets of C

holds x = the Zero of C;
end;

The attributes determining conditions for vector spaces (VectSp-like) and metric spaces
(Reflexive, discerning, symmetric, triangle [KLS90]) are also used in our for-
malization. These conditions seem to be not enough to define commodity space, as the struc-
ture of a set of baskets cannot be fully described. So, we introduce a quasi commodity space:

definition ::CommoditySpace
mode PreCommoditySp is

positive with_empty_basket VectSp-like complete
(non void Reflexive discerning symmetric triangle
CommodityStr over F_Real);

end;

which has to satisfy axioms of metric space (in our case they became Mizar theorems) shown
bellow:

theorem Th3:
dist(x,y)>=0 by METRIC_1:5;

theorem Th4:
dist(x,y)=0 iff x=y by METRIC_1:2,1;

theorem Th5:
dist(x,y)=dist(y,x);

theorem Th6:
dist(x,y)<=dist(x,z)+dist(z,y) by METRIC_1:4;

convergence of Cauchy sequences (complete), and axioms of vector spaces.
As a test of correctness of this approach, we prove the following theorems from the book

[Pan02] related to topological properties of a quasi Commodity Space. We introduce some
topological notation missing in MML:
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– closed, open, compact as attributes for subsets of a metric space (in our case, for
sets of baskets),

– R-neighborhood(x) as a synonym for an open ball with center in x and radius R,
– predicate is_internalpoint_of and operation Int,
– predicate is_boundarypoint_of and operation Bnd.

definition
let X be non empty MetrSpace;
let A be Subset of X;
attr A is closed means A is closed Subset of TopSpaceMetr X;
attr A is open means A is open Subset of TopSpaceMetr X;
attr A is compact means A is compact Subset of TopSpaceMetr X;

end;

To test the correctness of the attribute closedwe prove the characterization of it in terms
of convergence (of Cauchy sequences):

theorem Th8:
M is closed iff for SB being sequence of C
st SB is convergent holds lim SB in M

The attribute open is tested by the characterization of internal points. Namely, a set M is open
if every basket x ∈ M is one of its internal point:

theorem
M is open iff for x st x in M holds x is_internalpoint_of M;

Eventually, a set M is compact if it is bounded and closed where a set M is bounded
if there exists a positive number N such that the distance between any two baskets in this set
does not exceed N (see below)

theorem
M is bounded iff ex R st R > 0 & for x,y
st x in M & y in M holds dist(x,y) <= R by TBSP_1:def 9;

theorem Th12:
M is compact iff M is bounded closed;

A basket is an internal point of a set M if it has an open neighborhood included in M.

definition
let C be MetrStruct, x be Element of C, M be Subset of C;
pred x is_internalpoint_of M means

ex R st R > 0 & R-neighborhood(x) c= M;
end;

The interior of a set M is the set of all of its internal points.

definition
let X be non empty MetrSpace;
let A be Subset of X;
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func Int A -> Subset of X equals
{x where x is Element of X: x is_internalpoint_of A } ;

coherence
end;

A boundary point of a set M is a basket from M with each open neighborhood having a
common point with the complement of M (M‘).

definition
let C be MetrStruct, x be Element of C, M be Subset of C;
pred x is_boundarypoint_of M means x in M & for R st R > 0

holds R-neighborhood(x) meets M‘;
end;

definition
let X be non empty MetrSpace;
let A be Subset of X;
func Bnd A -> Subset of X equals

{x where x is Element of X: x is_boundarypoint_of A } ;
coherence

end;

Please note that Bnd A differs from Fr A from [WD90]. For example a boundary of open
closed segment S = (0,1 > is different than the frontier of this segment. Bnd(S) 6= Fr(S)

Next, to test vector space aspects of quasi commodity space we investigate the theory of
convexity. Our goal is to define commodity space as a quasi commodity space with a convex set
of all baskets. In such spaces, a linear convex combination of baskets is also a basket. Linear
convex combination of baskets x,y is a combination αx + βy, where α and β are non negative
real numbers such that α+β = 1.

definition
let C be PreCommoditySp;
let x,y;
mode LinearConvexCombination of x,y -> Basket of C means
ex R1, R2 being non negative Real st

it = R1 * x + R2 * y & R1 + R2 = 1;
existence;

end;

Set M is convex if all linear convex combinations of any two baskets included in M also
are included in M:

definition
let C be PreCommoditySp;
let M;
attr M is convex means :defCon:
for x,y st x in M & y in M for R1, R2 being non negative Real
st R1 + R2 = 1 holds R1 * x + R2 * y in M;

end;
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3. Preference Relation

A consumer exposes his preference by comparing two commodities or baskets of com-
modity. The consumer may decide that one is better than the other (preference relation) or they
are equally preferred (indifference relation). To formalize that, we define PreferenceStr
which contains the carrier and two relations on this carrier. In MML the theory of or-
dered sets was already well advanced [BR02] (based on the structure RelStr). Because the
preference relation is similar to the ordering relation we decided to define PreferenceStr
as an extension of RelStr.

definition
struct (RelStr) PreferenceStr (#

carrier -> set,
InternalRel, IndiffRel -> Relation of the carrier

#);
end;

The relation InternalRel corresponds to a preference relation and IndiffRel corre-
sponds to an indifference relation of consumer.

For convenience and to assimilate notation to that from Panek’s book [Pan02], we intro-
duce some definitions . Therefore we can write

– x Succ y,1 which means x is preferred over y,
– x prec y means y is preferred over x,
– x sim y means x is indifferent from y,
– x succsimm y which means x is preferred over y or x is indifferent from y,
– x precsim y analogically.

notation
let P being PreferenceStr;
let x,y be Element of P ;
synonym x succsim y for x <= y;
synonym y precsim x for x <= y;

end;

definition
let P being PreferenceStr;
let x,y be Element of P ;
pred x sim y means :defSim: [x,y] in the IndiffRel of P ;

end;

definition
let P being PreferenceStr;
let x,y be Element of P ;
pred x Succ y means :defSucc: x succsim y & not x sim y;

end;

1 \succ in TeX is rendered as �, \sim as ∼, \prec as ≺, \succsim as %, and \precsim as - .
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According to the book [Pan02] a preference relation has to satisfy the following axioms:

– connectedness: ∀x,y (x % y)∨ (y % x)
– transitivity: ∀x,y,z (x % y)∧ (y % z) ⇒ x % z

So we define a preference relation as a connected and transitive relation.

definition
let C be non empty 1-sorted;
mode Preference of C is

connected transitive Relation of the carrier of C;
end;

Formalization of further properties of the preference relation has shown that the strong part of it
(≺ = - \ ∼) should satisfy the axiom

– asymmetry: ∀x,y x � y ⇒¬(y � x)

Without such an assumption some theorems from the book [Pan02] would be false (see point
b) below).

The indifference relation is defined in the book [Pan02] as a set of all pairs of baskets
which are indifferent, and the following conditions are satisfied:

– reflexivity: ∀x x ∼ x
– symmetry: ∀x,y (x ∼ y) ⇒ (y ∼ x).

To formalize it we used Tolerance relation, which is total,reflexive, and symmetric
already defined in MML. So the Indifference is just a Tolerance relation:

definition
let C be 1-sorted;
mode Indifference of C is

Tolerance of the carrier of C;
end;

Finally Consumer Preference is defined as PreferenceStrsuch that an indifference relation
is included in the preference relation and a strong preference relation is asymmetric.

definition
mode ConsumerPreference -> non empty PreferenceStr means :defPP:

the InternalRel of it is Preference of it &
the IndiffRel of it is Indifference of it &
the IndiffRel of it c= the InternalRel of it &
(the InternalRel of it) \ the IndiffRel of it is asymmetric;

end;

Under this condition we have the following theorems:

a) x � y∨ y � x∨ x ∼ y which is formalized as:
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theorem
for P being non empty ConsumerPreference;
for x,y being Element of P holds
x Succ y or y Succ x or x sim y;

b) (x % y∧ y % x) ⇔ x ∼ y

theorem
for P being non empty ConsumerPreference;
for x,y being Element of P holds
( x succsim y & y succsim x ) iff x sim y;

In the proof of this theorem the asymmetry of strong preference was necessary.
c) (x % y∧¬(y % x)) ⇔ x � y

theorem
for P being non empty ConsumerPreference;
for x,y being Element of P holds
( x succsim y & not ( y succsim x ) ) iff x Succ y;

d) (x % y∧ y � z) ⇒ x � z

theorem
for P being non empty ConsumerPreference;
for x,y,z being Element of P holds
( x succsim y & y Succ z ) implies x Succ z;

4. Consumer Preference Filed

As a final result we defined a consumer preferences field. It is ConsumerPreference
concerning the set of baskets of a commodity space. To define this, we had first to merge
structures of commodity space and consumer preferences (PreferenceFiledStr). Finally,
consumer preferences fields are formalized as:

definition
mode PreferenceField -> PreferenceFieldStr over F_Real means

it is CommoditySp & it is ConsumerPreference;
end;
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Abstract – In this paper we describe the development of the Fibonacci numbers and their general-
izations (e.g., Lucas and the so-called G–numbers) in the Mizar Mathematical Library. We focus on
the proof of the Carmichael theorem on the prime divisors of prime-generated Fibonacci numbers –
based on the observation of Shane Findley made only a few years ago.

1. Introduction

The idea of Fibonacci numbers is dated back to 1202, when Leonardo Pisano (Fibonacci)
introduced in his book Liber abaci the problem “how fast could rabbits breed in ideal circum-
stances?” The name of the series obtained in this way appeared in the present form much later
about 1870 and is due to French mathematician Edouard Lucas.

Although the sequence we deal with was introduced rather early in Mizar (about 10 years
ago), it was not really developed in the Mizar Mathematical Library, at least to the extent it
deserves. Our mission was to formalize main facts concerned with the Fibonacci numbers to
create a sort of monograph. We decided also to choose a fact which is relatively well-known
with rather recent proof. The theorem we considered was the Carmichael Theorem.

This is a description of the work already done in Mizar (see [4], [8] for full Mizar represen-
tation).

In Section 2 we briefly describe how the Fibonacci sequences are defined in Mizar and
point out some improvements based on the schemes for recursive definitions in Section 3. The
next three sections contain the Mizar encodings of the set of basic identities, the restricted
Carmichael Theorem, and the connections of Fibonacci numbers with Pythagorean triples, re-
spectively. Section 7 points out three feasible generalizations/modifications of Fibonacci se-
quences, and in the last section we draw some concluding remarks and discuss our plans for
future work.

2. Fibonacci Numbers and Their Formalization

Fibonacci-type sequences are probably most famous for their recursive definition. The
classical one is defined just as

Fib(n) =











0, if n = 0,

1, if n = 1,

Fib(n−1)+Fib(n−2), otherwise,

(1)

? The work described here is a subset of the second author’s B.Sc. thesis in mathematics defended in July 2004.
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Each element of the sequence arises by summing up the two elements that come before it. We
have put the first twelve Fibonacci numbers into a table.

n 0 1 2 3 4 5 6 7 8 9 10 11 12
Fib(n) 0 1 1 2 3 5 8 13 21 34 55 89 144

Although this definition is formulated very simply in natural language it caused some trou-
bles during its formalization in [1]. Since [1] was written with the primary aim of coding some
algorithm in the Mizar model of a computer (AMI), and the expressive power of the Mizar lan-
guage in those days was significantly weaker than it is today, nobody complained.

definition let n be Nat;
func Fib (n) -> Nat means

:: PRE_FF:def 1
ex fib being Function of NAT, [:NAT, NAT:] st
it = (fib.n)‘1 & fib.0 = [0,1] &
for n being Nat holds fib.(n+1) = [ (fib.n)‘2, (fib.n)‘1 + (fib.n)‘2 ];

end;

In the next section we will propose a slight modification of this definition based on schemes
for recursive definitions available in the Mizar Mathematical Library to simplify the definition.

3. Recursive Definitions in Mizar

In order to make the definition clearer and closer to mathematical standards, first we define
a function which maps the set of all natural numbers into the set of corresponding Fibonacci
numbers.

definition
func Fib -> Function of NAT, NAT means

it.0 = 0 &
it.1 = 1 &
for k being Nat holds it.(k+2) = it.(k+1) + it.k;

end;

Then we define a Mizar functor which is equivalent to the original definition. To prove the
correctness of a functor definition in Mizar one have to show existence (which is often just
the construction of the object with appropriate properties) and uniqueness (the proof that
such an object is unique) conditions. In the case of Fibonacci-type sequences, both can be
justified easily by the schemes introduced recently in [5].

The scheme of existence is as follows:

scheme LambdaRec2ExD { X() -> non empty set,
A, B() -> Element of X(),
F(set, set, set) -> Element of X() } :

ex f being Function of NAT, X() st
f.0 = A() &
f.1 = B() &
for n being Nat holds f.(n+2) = F(n, f.n, f.(n+1));
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A and B here are starting values of a recursively defined sequence. One has to use a pri-
vate functor which defines a recursive step. Similarly the scheme of uniqueness – LambdaRec2UnD
– is also proven. These schemes enable us to have the correctness proof of the definition nearly
straightforward.

definition
deffunc F(Nat,Nat,Nat) = $3 + $2;
func Fib -> Function of NAT, NAT means

it.0 = 0 & it.1 = 1 &
for k being Nat holds it.(k+2) = it.(k+1) + it.k;

existence
proof

ex f being Function of NAT,NAT st f.0 = 0 & f.1 = 1 &
for n being Nat holds f.(n+2) = F(n, f.n, f.(n+1))
from LambdaRec2ExD;

hence thesis;
end;
uniqueness;

end;

Obviously, similar shortcut may be applied in the case of the proof of uniqueness (scheme
LambdaRec2UnD from [5] should be used).

4. Basic Identities, Golden Ratio

According to the recent policy of the Library Committee of the Association of Mizar Users
to improve the clustering of the MML items to separate its classical and abstract parts and
to further enlarge of the Encyclopedia of Mathematics in Mizar, we developed in [4] a sort of
monograph of Fibonacci numbers gathering the most useful and well-known properties of these
objects. We formalized the following:

– the Catalan identity (as more general than that of Cassini):

(Fib(n))2 −Fib(n+ r) ·Fib(n− r) = (−1)n−r · (Fib(r))2,

– the Cassini identity (proven as a corollary of the previous one):

F(n+1) ·Fib(n−1)−
(

Fib(n)
)2

= (−1)n,

– the d’Ocagne identity:

Fib(m) ·Fib(n+1)−Fib(n) ·Fib(m+1) = (−1)n ·Fib(m−n),

– the Gelin – Cesaro identity:

(Fib(n))4 −Fib(n−2) ·Fib(n−1) ·Fib(n+1) ·Fib(n+2) = 1,

and the connections with Pythagorean triples in the approach of [7] which will be described in
more detail in Section 6.

We have also shown further connections between Fibonacci sequences and the golden
ratio factor

τ =
1+

√
5

2
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as defined in [6].
As the core result, the Binet formula or the theorem stating that the limit of the quotient of

two consecutive Fibonacci numbers converges to τ, may be presented [6]:

theorem
for F being Real_Sequence st

(for n being Nat holds F.n = Fib(n+1)/Fib(n)) holds
F is convergent & lim F = tau;

Most basic equalities which are true for the Fibonacci numbers are also unproblematic
to compute for modern computer algebra systems. Because the implementation of computer
algebra in the Mizar system is at a very early stage and there is no syntax for recursion in the
definitions of the Mizar functors, Mizar encoding of this topic is not straightforward.

At the end of this section we would like to mention one of the advantages of using functions
instead of Mizar functors. Namely, we can define various restrictions of an original function Fib
(infinite as a rule) to obtain via redefinitions and clusters mechanism proper types to use a
functor Sum.1 In this manner, we prove two theorems about the summing of Fibonacci numbers
with odd and even indices.

One of them is as follows:

theorem :: FIB_NUM2:67
for n being Nat holds

Sum EvenFibs (2 * n + 2) = Fib (2 * n + 3) - 1;

where EvenFibs(n) denotes a finite sequence of all Fibonacci numbers with even indices
less than or equal to n.

5. The Carmichael Theorem

The Carmichael theorem [2] which was introduced in a paper from 1913 states that if we
consider the prime factors of the n-th Fibonacci number (except n = 1,2,6,12), then at least one
of them has not appeared in the factorization of any earlier Fibonacci numbers (the so-called
characteristic or genome factor).

The characteristic factors (as well as all prime indices) are in bold face font in Table 1.
This does not mean that for an arbitrary prime natural p the element Fib(p) itself must

be prime, only that no smaller Fibonacci number can be a factor. As an example of this, we can
point out Fib(19) which is not prime.

theorem :: FIB_NUM2:71
for n being non empty Nat holds

m is prime & n is prime & m divides Fib (n) implies
for r being Nat st r < n & r <> 0 holds not m divides Fib (r);

The above theorem is based on the observation of Shane Findley only a few years ago
(1999, [3]) stating that if we restrict our considerations to Fibonacci numbers generated by
primes, none of them has appeared a factor in any earlier Fibonacci number (all factors are
genome factors).

1 We should really use sums of partial functions rather than of finite sequences to make this work even easier since
we can omit reorderings in this way.
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Table 1. Factorization of the first 26 Fibonacci numbers

n Fib(n) Factors n Fib(n) Factors
1 1 1 14 377 13 ·29
2 1 1 15 610 2 ·5 ·61
3 2 2 16 987 3 ·7 ·47
4 3 3 17 1597 1597
5 5 5 18 2584 23 ·17 ·19
6 8 23 19 4181 37 ·113
7 13 13 20 6765 3 ·5 ·11 ·41
8 21 3 ·7 21 10946 2 ·13 ·421
9 34 2 ·17 22 17711 89 ·199

10 55 5 ·11 23 28657 28657
11 89 89 24 46368 25 ·32 ·7 ·23
12 144 24 ·32 25 75025 52 ·3001
13 233 233 26 121393 233 ·521

As the proof of the full Carmichael theorem is rather long (even its simplified version in [9]
is six pages long), we developed full Mizar formalization of the restricted version with its rather
elementary proof given from scratch.

To prove this version of the Carmichael Theorem in Mizar we had to show that for any
non-zero prime natural n and a prime natural number m such that m divides Fib(n) we have
that if k is non-zero and k < n, then m does not divide Fib(k).

The proof is by contradiction. Namely, we assume that there exists a non-zero natural
number k < n such that m divides Fib(k), then we obtain that k successively becomes less than
n/4,n/5,n/6 etc. So there is no smallest r > 0.

defpred P[Nat] means
(m divides Fib (n -’ k * ($1 + 1)) & k <= n / ($1 + 2));

A9: P[0];
A14:for s being Nat st P[s] holds P[s+1];
A34:for s being Nat holds P[s] from NAT_1:sch 1(A9,A14);

In the above proof skeleton, one may see an appropriate private predicate to use with the
scheme of induction, A9 – the first step of induction and A14 – the second step. The whole
Mizar proof of this theorem consists of 130 lines of code.

Before I present the sketch of the proof, I will cite some lemmas which will be necessary
later. The first of them is FIB_NUM2:42which states:

for k being non empty Nat holds
Fib (n+k) = Fib (k) * Fib (n+1) + Fib (k-’1) * Fib (n);

Next is theorem Th69 from the same file:

for n being Nat holds Fib (n), Fib (n+1) are_relative_prime;

Let us recall that there is at least one natural number, let us call it k, such that k 6= 0 and
k < n and m divides Fib(k). Assume that k is the smallest natural (positive) number satisfying
the above conditions. Then by theorem FIB_NUM2:42 we can show that

Fib(n) = Fib(n− k + k) = Fib(n− k−1) ·Fib(k)+Fib(n− k) ·Fib(k +1).
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From the assumption we know that m divides Fib(k). Hence by NAT_1:56 we have that
m divides Fib(n− k− 1) ·Fib(k). We also know that m divides Fib(n) and this in connection
with the fact above gives us that m has to divide

Fib(n− k) ·Fib(k +1)

(by NAT_1:57). But according to the theorem FIB_NUM2:69 both Fib(k) and Fib(k + 1)
are relative prime which gives us that m does not divide Fib(k +1), so it means that m divides
Fib(n− k). The condition n− k ≥ k must be satisfied because k is the smallest natural number
divisible by m. Hence, we have that

k ≤ n
2

which completes the proof of A9.
So, let us assume that the fact above is true for some s and show that it is also true for

s+1. Let
m|Fib

(

n− k(s+1)
)

.

By theorem Th42 from FIB_NUM2 we have:

Fib
(

n− k(s+1)
)

= Fib
(

n− k(s+2)+ k
)

=

= Fib
(

n− k(s+2)−1
)

·Fib(k)+Fib
(

n− k(s+2)
)

Fib(k +1).

From the main assumption m|Fib(k) and theorem NAT_1:56 we know that m|Fib
(

n−
k(s+2)−1

)

·Fib(k). So, we also obtain that

m|Fib
(

n− k(s+2)
)

·Fib(k +1)

(by NAT_1:57 and inductional assumption). But m does not divide Fib(k + 1) and hence
m|Fib(n− k(s + 2)). As k is the smallest natural number such that m|Fib(k), we then get n−
k(s+2) ≥ k and finally k ≤ n

s+3 which completes this part of our proof (A14).
So by the scheme of induction, we know that for all natural numbers the following inequality

holds:
k ≤ n

s+2
.

But, if s is arbitrarily large, then zero is the limit of n
s+2 and it means that k ≤ 0, which is con-

tradictory with the assumption saying k is a natural number not equal to zero. This contradiction
completes the whole proof.

6. Pythagorean Triples

We studied also the connections between Fibonacci numbers and Pythagorean triples.
We can generate these triples using the following algorithm:

1. Multiply the two inner numbers, then double the result. This is one side of the Pythagorean
triangle.

2. To obtain the second side we multiply together the two outer numbers.
3. The third side, the longest one, is found by adding together the squares of the inner two

numbers.

The formal definition of the triples is a definition of a Mizar mode.
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definition
mode Pythagorean_triple -> Subset of NAT means

:: PYTHTRIP:def 4
ex a,b,c being Nat st a^2 + b^2 = c^2 & it = { a,b,c };

end;

Here one may also see a result of a formalized algorithm from [4].

theorem
for n being non empty Nat holds

{ Fib (n) * Fib (n+3),
2 * Fib (n+1) * Fib (n+2),
(Fib (n+1)) ^2 + (Fib (n+2)) ^2 } is Pythagorean_triple;

7. Generalizations

As one may expect, the Fibonacci sequence itself is also a subject for generalizations and
modifications.

We can point out here an extension of (1) for integer numbers, given by a following formula:

Fib(−n) = (−1)n−1 ·Fib(n).

We put the first ten Fibonacci numbers computed according to the above formula into the
table below.

n −1 −2 −3 −4 −5 −6 −7 −8 −9 −10
F(n) 1 −1 2 −3 5 −8 13 −21 34 −55

The problem with this formal approach is that there is no convenient way of extending
conservatively (e.g., for integers) the definition which is introduced already (for natural numbers
in our case). The best idea probably is to revise the original, but unfortunately this work is not
done.

Another generalization of the Fibonacci sequence we could mention here are Lucas se-
quences and so-called G–numbers. Obviously, they are based on a recursive relationship similar
as (1). The table below summarizes basic differences between them.

Sequence type 1st value (n = 0) 2nd value (n = 1)
Fibonacci 0 1

Lucas 2 1
G-Fib a b

Both ways of generalizations as well as properties analogous to those proved in [6] and [4]
are fully formalized in [8]. For example, one may find there a theorem confirming that by using
G–numbers we can define Fibonacci and Lucas numbers (Thms. 37, 38, 42).

G-Fib(0,1,n) = Fib(n)

G-Fib(2,1,n) = Lucas(n)

G-Fib(a,b,n) = a ·Fib(n−1)+b ·Fib(n)

One of the most significant theorems of [8] is the Binet formula for generalized Fibonacci
numbers:
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theorem :: FIB_NUM3:54
for a, b, n being Nat holds

GenFib(a,b,n) = ((a * (-tau_bar) + b) * tau to_power n +
(a * tau - b) * tau_bar to_power n) / sqrt(5);

Interestingly, the proofs of the Binet formula for Fibonacci numbers and generalized Fi-
bonacci numbers have the same length measured in lines of Mizar source code (namely 75).
The Mizar functor tau_bar corresponds to τ̄ and is equal to 1− τ.

8. Conclusion and Future Work

Our main plan for future is codifying the proof of the (full) Carmichael Theorem (according
to Yabuta [9]). Another subject is thinking about generalized Fibonacci numbers (with arbitrary
starting values) as a primitive notion with properties of Fibonacci numbers treated as corollaries.
We would also like to find out which of the following approaches is more feasible:

– using a function, then to define a functor or
– having Mizar functors as primitive notions, then functions,

because, handling both in parallel seems to be ineffective either during the writing of theorems
or during their retrieve from the database.

It is hardy acceptable to have many parallel notions, e.g., squares (various powers, includ-
ing |^2, ^2, to_power 2), sums of series (Sum, Partial_Sums), etc.

Making coherent sets of theorems written in a uniform style makes some sense, as well
as grouping lemmas gathered across the whole MML. It is not clear if dividing the library into ab-
stract and concrete parts will ever succeed, but to uncover information which is deeeply hidden
between the lines seems to be the proper way of thinking for the next 15 years of MML.
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Abstract – The Alcor user interface to the Mizar library is intended to provide a test bed for exploring
how a mathematician might interact with mathematical knowledge management tools. Specifically,
how can a mathematician whilst working on or writing up mathematics look up relevant mathematical
knowledge without interrupting their workflow? We describe how a specific interaction style has been
used to implement keyword search and discuss how that style could benefit other more complex
forms of context-specific searching.

1. Interfaces to MKM

The major goal of mathematical knowledge management (MKM) is to make available the
enormous volume of mathematical knowledge available in current mathematical resources [9].
Of course, to make that knowledge valuable it needs to be provided to the right person, at the
right time, in the right way. The potential user-base for MKM is almost anybody who applies or
develops mathematical knowledge as part of the their work, that is, mathematicians, physicists,
economists, chemists, social scientists and so on. It is therefore unlikely to be able to provide
a single user-interface that would be acceptable to all users. The focus then in the current
work is to look at user interfaces that might support mathematicians in developing mathematical
material that could then integrate back in to MKM resources for other mathematicians. Even so,
it is expected that mathematicians could produce and draw upon a wide-range of heterogeneous
resources such as web-sites, journal articles, software and text-processing documents such as
LATEX.

This general task of integrating knowledge across distributed, heterogeneous resources
with multiple authors is a typical knowledge management task[8]. However, it is further compli-
cated in the case of mathematics that any synthesis of this material that a mathematician might
make and build upon needs to be re-integrated back into the body of mathematical knowledge.
There is no room for imprecision or personal interpretation of meaning as this could mean the
difference between a correct proof and an incorrect one.

Mathematical knowledge management is still some way from achieving such an integrated
environment for the working mathematician. I accordingly do not try to address the full problem
but instead consider a mathematician who might be working using some homogeneous library
of mathematics and who would like in turn to contribute their work back to the library. The
prototype environment would be an author for the Mizar Mathematical Library [6]. To be a suc-
cessful Mizar author, a person must add an article to the library that constitutes some significant
mathematical contribution to the library and in addition it should avoid replicating or apparently
contradicting the definitions and theorems already in the library. To explore the working activities
of such an author, the Alcor system has been developed as a possible working environment.
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This paper describes the main motivations for developing the Alcor system. The current system
falls considerably short of these lofty goals, nonetheless, we describe its current features and
capabilities before concluding with the planned future developments.

1.1 A note on the name

The Mizar system is a proof checking environment built on a sophisticated mathematical
vernacular. It is famously named after the second star (in fact, quadruple star system) in the
handle of the constellation Ursa Major, also designated ζ UMa. Interestingly, Mizar has a close
companion star, Alcor, not in the main Mizar system. Alcor is visible to the naked eye for those
with good acuity. Native Americans actually called the pair of stars the horse and rider [7].
Inasmuch as the system described here proposes to sit alongside the Mizar system rather than
augment or integrate into it, the name Alcor seemed appropriate in many ways.

2. Using Mizar

Though the motivation in developing Alcor was to explore how a working mathematician
might use Mizar or a system like Mizar, a user-centred design approach that would be typical for
user interface development [11] has not been adopted. This is for the simple reason that there
are currently very few working mathematicians who regularly use any sort of automated prov-
ing or proof checking system. The proposed developments in this system and in mathematical
knowledge management more generally are innovative, fitting into a complex working pattern
[8] and so a study of existing practices would, at this stage at least, be uninformative. Instead,
a problem statement is used to encapsulate the goals of the system whilst not forgetting the
priority of the user [10]:

Design a graphical user interface to enable mathematicians in their ordinary work to suc-
cessfully develop Mizar articles that do not replicate existing Mizar content and without
the need for extensive knowledge of the entire Mizar library.

The approach to addressing this problem statement is motivated by a personal view of the
difficulties in developing a Mizar article. A full discussion of Mizar and the process of develop-
ing articles would be inappropriate here and additionally it has been discussed in great detail
elsewhere [12, 15]. In brief, though, a Mizar article is a collection of theorems, definitions and
proofs written in the Mizar language. The language is very rich, particularly in comparison to
other formal mathematical languages [14], being intended as a mathematical vernacular though
this language is not without its complexities [4]. Having written theorems and proofs in the Mizar
language, the Mizar system itself checks the proof and is able to assert whether or not the proof
is formally correct within the definition of the language, the context of the particular article and
any elements of the library referenced in the article. The goal, then, of any author is to produce
theorems that are significant mathematically but not previously present in the library.

There are some natural barriers to achieving this goal. The library is very large with some
2000 definitions and 30,000 theorems. Full knowledge of it may only come with years of expe-
rience. In addition, like all formal mathematical languages there is a degree of verbosity [14]
which means that not all theorems are of mathematical significance. Finding the key theorems
for a particular task could be difficult. Also, like all formal languages, such as programming lan-
guages, it can sometimes be easier at first to copy and then adapt existing proofs. Even then,
it is important to know that the terms in the proofs are being used according to their correct
definitions.
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Given this goal and these possible barriers, a person wishing to write a new article may
well ask the following questions:

1. What is already in the library that I might need?
2. Can I adapt a proof of a similar statement?
3. Is there a theorem that I could use to prove this. . . ?
4. What is the exact definition of. . . ?

These first two questions work at a very high level being very much about the topic of
work. The last two questions are more about the pragmatics of producing a correct Mizar proof.
In particular, I am also working on the third question using LSI to provide a new search technique
that may eventually address questions 1 and 2 [3]. The last question is relatively straightforward
and it is this that is directly addressed in the current version of the Alcor system. It is hoped that
as work on LSI progresses, Alcor will increasingly support answering the other three questions.

The need for better search facilities is recognised by frequent users (and developers) of
Mizar [2], indeed, Bancerek and Rudnicki ask similar questions when it comes to searching
Mizar. Their approach has been to develop a query language to do semantic retrieval that ad-
dresses the last two of the above questions. With the Alcor system, the approach has been
rather to take a more graphical “point-and-click” style though at the moment this is at the cost of
being less powerful in the kinds of retrieval that it can do.

3. The Alcor System

Given the current goal of the Alcor system is to be able to find definitions for an author
working on an article, a workflow approach to authoring was taken inspired by the Phrasier
system [5]. More explicitly, the author should have a full text editor that allows them to produce
an article but at the same time be integrated with a search tool that enables them to look up
definitions without interrupting their attention from their own work.

Figure 1 shows the main screen of the Alcor system. The left hand window is the main
editor where the author would be working. There are many ways to enable a simple keyword
search for definitions. Several have been included. There is a text box along the bottom of the
screen where users can type free text. This text box also has a drop down menu that shows past
search terms. This acts like a history function so that the author can easily replicate previously
performed searches and peruse them if they have forgotten the exact terms of the search. The
third method for entering search terms is simply to highlight words in the editor window. In this
way, the author can maintain their focus at the position in their article where they are currently
working. Having highlighted the word, they can then click the “Search” button that runs beneath
the menu bar (though this in fact is not easily recognised in its current location). Alternatively, in
keeping with the PC paradigm, the user could right click and select to search on the highlighted
word.

Search results appear in the lower window. Currently the display results are the location,
that is, the Mizar reference, for the found items and also the type of item that has been found.
This is because a single term may be defined in multiple senses depending on the particular
need in particular articles. For example, the figure shows the results of a search on the term
“closed” that has resulted in 9 items found. The context of work is an article on topology but
of course with a novel piece of mathematics, it could be misleading to assume that only the
topological definition of closed is required. For example, if the article were on topological groups
then closed could be needed in either the sense for topologically closed or for algebraically
closed.
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Fig. 1. The Alcor system

To see the actual definitions, the user simply clicks on the location in the search results
window. The required definition is displayed in the right hand window as given in the abstract
(rather than the full Mizar article). This is partly simply to demonstrate the principle and partly
because of implementation limitations in finding the definition in the full article. To make the
definition clear to the user, it is positioned at the top of the window and highlighted in yellow.

As is often the case, the results of one search may lead on to further searches to clarify or
explore other possibilities. The right hand window therefore also supports the same interactions
for performing searches. Thus, the author could highlight search terms in their own work, get a
retrieved abstract in the other window and carry on highlighting new search terms in the retrieved
abstract. New retrieved abstracts would still come up in the right hand window so that the author
would always have their own work on display.

Thus, a keyword search for definitions is implemented in a traditional graphical user inter-
face style. In this sense, it is very like the Phrasier system where a text document being written,
say a newspaper article, acts as a context for searching for similar or related articles. The found
articles are shown in parallel to the article being worked on. In a natural language context, this
could act as the “plagiarist’s dream” (I. Witten, personal communication, 2002) but for mathe-
matics where there is much less profit in plagiarism this workflow may be of real benefit.

Indeed, it is hoped that this has a more integrated workflow than the use of either a sep-
arate query language or a separate tool entirely such as grep. Also, the style of interaction
is clearly extensible to other sorts of search. For example, to find a theorem that might help
in proving a particular statement, the author could highlight the statement to be proved (rather
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than just a single word) and search on that. And highlighting a theorem might search for related
theorems whose proofs could be adapted to prove the author’s statement. In all of these exam-
ples, the context of the current work, namely the article that the author is currently working on,
indicates the kind of query that is required. This removes the onus from the author to formulate
the query precisely and so allows them to concentrate only on authoring.

Of course, achieving this context-aware searching requires appropriate underlying algo-
rithms. This is the aim of other work [3] but it is worth noting that the interaction style is actually
independent of the methods use to produce good search results.

4. Future Work

In its current state, the Alcor system is intended as a test bed for different types of interac-
tion that might support an author. In particular, the initial focus has been on supporting searching
the Mizar Library. Thus, Alcor is far from a complete authoring environment for Mizar articles —
it certainly does not attempt to offer the full functionality that the Mizar mode in emacs offers. In
fact, so far, it only colours keywords in approximately the same way as the emacs Mizar mode.
A first step before trying out Alcor with real Mizar authors would be to augment it to be at least
as good as the emacs mode with the additional interactions discussed here. That way, authors
would not be disadvantaged over using existing tools and and investigation of the real efficacy
of the proposed interactions could be done.

The fact that searches produce retrieved articles that can then be used to define further
searches means that there is the possibility of an author losing useful searches whilst they
explore other possibilities. There is already a history mechanism for search terms but a more
sophisticated history mechanism including forward and back as in a web browser and found
items listed by article may also be required.

Alcor is intended to support novel search methods for the Mizar library and my other work
is looking at how to implement that. A specific problem with the LSI method is how to formu-
late suitable queries so it is hoped that Alcor would provide sufficient support to automatically
formulate queries based on the context of searching. In fact, the highlighting style of defining
search terms could give valuable information as to the exact nature of the search being done.
In this sense, the style of interaction would become integral to the search algorithm. This may
not be desirable in the long run and other methods of defining context may be explored in future
versions of Alcor.
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1. Internet and e-Learning

With the development of Internet and information communication technologies, by simply
connecting their PCs to the Internet, students today can study college lectures at any time and
any place without going to campus. In colleges and universities in the U.S., where persons
with jobs in the working force comprise half of the student population, e-learning technologies
were introduced first in the world using Web contents and various information communication
technologies such as e-mail and BBS or electronic bulletin board systems. The University of
Phoenix e-learning program and the OpenCourseWare project of MIT are well-known examples.

In 2002, the department of information engineering at Shinshu University established the
first Internet-based graduate school in Japan which allows students to earn degrees at the
master and Ph.D. levels through distance courses and research advising via the Internet. The
URL of the Internet graduate school is http://cai.cs.shinshu-u.ac.jp/sugsi/
and it is the entrance point from which students are able to access the research and education
services of the school which include lectures and lecture materials, online exams, research
advising, online discussions with professors, seminar participation, etc.

Discussions of e-learning have reached a point where web materials and contents focus-
ing on visual effects have lost their novelty. However, these are but a single method of delivery
for current e-learning and distance education by the Internet. What we need to focus on is an
important topic in the background of e-learning - the emerging shift from group education in the
classroom to the individualization of education.

The ultimate form of individualized education would be to provide for each student a one-
on-one interaction with one professor (or perhaps a group of professors who are experts in the
area).

By escaping the limitations of time and space using the Internet, this type of individualized
education becomes realistically possible. In this case, rather than simply a role as an educator,
the professor plays more of a role as a coach who assists individual students pursuing learning
through the materials on the Internet.

2. Mathematical education using Mizar

It is frequently pointed out that although e-learning is effective as a means for communi-
cating knowledge and information, it is not well-suited for exercises in thinking processes and
problem solving. As a result, it is often said that science and engineering education, which are
based on logical reasoning, cannot be made into e-learning.
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Certainly, in some exercises it is necessary to handle actual materials and equipment and
it is not just a matter of replacing them with corresponding items in virtual reality. By no means
is e-learning a cure-all remedy. However, if we limit our considerations to the training of logical
thinking processes and skills for mathematical thinking, the situation is completely different. For
example, in order to teach students to fully understand the proof of even a basic mathematical
theorem at a first or second year level of general college education, we will need to either work
with very small groups or spend long hours on thorough individualized teaching and guidance
based on the progress of each student. This would call for tremendous patience on the part of
the professor.

In order to develop students with a talent for creating and advancing scientific technolo-
gies, the education and training for logical reasoning and mathematical thinking is essential.
Ironically, the richer a country becomes economically, the more there is a tendency for its stu-
dents to dislike engaging in such logical reasoning and mathematical thinking training which is
plain and boring to them.

This is a serious situation which can be found in almost all of the developed countries
of the free economy. Japan as well is no exception and this problem is becoming more and
more serious. The roots of the “technology nation” which Japan had held pride in until now are
starting to see their foundations sink from this “abandoning of the technical fields”. Rather than
continuing the development efforts of many predecessors who built and nurtured the scientific
and industrial technologies and wanting to contribute to the world, the focus of more and more
people is only on economic profits and how to reap the benefits of the full and abundant lifestyles
and environment created by the fruits of these developments and this trend .is painting a bleak
future for the nation.

The key to recovering from this situation will be nothing other than the revival of mathe-
matics education. However, realistically, as mentioned earlier, we must consider how to secure
professors for very small groups of students and again are such lectures which demand long
hours of patience from the professors possible?

For this problem, there is no simple solution such as just assigning study exercises for
repeatedly solving calculation problems. When we consider, for example, the number of hours
of effort that will continue in order to coach and train a student how to construct the answer to a
proving problem, we realize that we must employ the power of computers with their never tiring
endurance to support the work of training mathematical thinking skills in students.

Researchers in our group have been involved in the Mizar project which develops a library
of mathematical theorems using a specification language developed by Polish mathematician
Prof. Andrzej Trybulec for the formalization of mathematics. The following will be a brief descrip-
tion for those new to Mizar.

2.1 Mizar

The formal mathematics specification language Mizar is used to write proofs of mathe-
matical theorems using symbolic logic based on first-order predicate logic and a set of axioms
of Tarski-Grothendieck set theory. The Mizar system is what is called a proof checker and it
employs a computer to verify the logical correctness of the proof of a mathematical theorem
specified in the Mizar language. An example of such a proof is shown in below:

environ

vocabulary ARYTM_3, ARYTM_1, INT_1;
notation XCMPLX_0, REAL_1, NAT_1, INT_1;
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constructors REAL_1, NAT_1, INT_1;
clusters INT_1;
requirements SUBSET, NUMERALS, ARITHM;
theorems INT_1, XCMPLX_1;
schemes NAT_1;

begin

theorem
for n being Nat holds 2 divides n*(n-1)
proof

defpred P[Nat] means 2 divides $1*($1-1);
0 = 2 * 0;
then

P0: P[0] by INT_1:def 9;
PN: for n being Nat st P[n] holds P[n+1]

proof
let n be Nat;
assume P[n];
then consider s being Integer such that

A2: n * (n - 1) = 2 * s by INT_1:def 9;
(n+1)*(n+1-1) = n*(n-1) + n + n*1

.= 2*(s+n) by A2;
hence P[n+1] by INT_1:def 9;

end;
thus for n being Nat holds P[n] from NAT_1:sch 1(P0,PN);

end;

Here, INT_1 is a library of definitions and theorems already registered in the Mizar sys-
tem. The definition INT_1:def 9 is specified as shown below:

definition
let i1,i2 be Integer;
pred i1 divides i2 means

:: INT_1:def 9
ex i3 st i2 = i1 * i3;

reflexivity;
end;

Similarly, NAT_1:sch 1 represents the mathematical scheme of induction registered
as follows:

scheme Ind { P[Nat] } :
for k being Nat holds P[k]

provided
P[0] and
for k being Nat st P[k] holds P[k + 1];

Details of the Mizar grammar can be found in such literature as the documentation by Prof.
Yatsuka Nakamura of Shinshu University which is available at the following URL
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http://markun.cs.shinshu-u.ac.jp/kiso/projects/proofchecker/
mizar/Mizar-E/Miz-etit.htm

By examining the lines after begin, researchers with some background information will
be able to make out in most part that if Nat represents the natural numbers, this is a specification
for the proposition, “For any natural number n, n · (n− 1) is divisable by 2” and its proof by
induction.

A special characteristic of the Mizar proof-checker is that specifications can be made with
expressions close to natural language. There are a number of proof-checkers of this type in the
world, but there are many cases in which the development was done by a graduate student for
thesis work and once the student graduates no one else uses it again. The Mizar proof-checker,
however, is developed by the Mizar group headed by Polish mathematician Prof. Andrzej Try-
bulec. A great number of researchers and graduate students work together in maintaining and
expanding the library. Presently, approximately 800 mathematical articles are contained in the
library and both the Mizar system and library are completely open at

http://mizar.uwb.edu.pl/

A mirror site in Japan is available at:

http://markun.cs.shinshu-u.ac.jp/mirror/mizar/

2.2 Mizar system on the web

Prof. Yatsuka Nakamura and I represent the members of the Mizar group on the Japan
side and currently manage the Internet graduate school program at Shinshu University. Mizar
holds an important position in our online course materials and we have two Mizar systems on
the Web for students to use.

One is the megrez system, developed by Prof. Grzegorz Bancerek during his JSPS fel-
lowship stay in Japan available at

http://megrez.mizar.org/

The other was created by a Japanese professor and can be accessed at the address

http://www.wakasato.org/mizar/

The latter is mainly used for graduate student lecture courses. To explain briefly how it is
used, students will first select a package depending on whether they want to define new terms
or use special system commands. In the next screen, they will input their student ID numbers
and e-mail addresses and be guided to the main page of the verifier. Here, students may input
proofs written in the Mizar language to a textbox field or specify a prepared file containing
the proof to be checked. Clicking the SUBMIT button with a mouse will start the Mizar proof
checker and any errors detected in the proofs will be displayed on the screen. With this system,
students will write proofs, in the same manner as programming exercises, ranging in difficulty
from simple propositions like the example given earlier to proofs of theorems in differential and
integral calculus of first and second year general education courses as shown here:

theorem
for n be Nat, f be PartFunc of REAL,REAL, x0,r be Real

st ( 0 < r & f is_differentiable_on n+1, ].x0-r,x0+r.[ )
for x be Real st x in ].x0-r, x0+r.[ holds
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ex s be Real st 0 < s & s < 1 &
f.x=Partial_Sums(Taylor(f, ].x0-r,x0+r.[,x0,x)).n
+ (diff(f,].x0-r,x0+r.[).(n+1)).(x0+s*(x-x0))
* (x-x0) |^ (n+1) /((n+1)!);

Unlike in programming exercises, however, as the reader familiar with symbolic logic can
easily anticipate, attempts to specify the proof of a fairly long mathematical theorem in a haphaz-
ard hit-or-miss fashion without careful planning will usually end in failure and frustration. From
the start, proofs need to be mapped out systematically with appropriate subproofs and lemmas
placed at intermediate steps and throughout the development work, a step-by-step application
of logical thought processes will be indispensable for completing the proof.

Since we are dealing with the specification of a proof, there can be more than one “correct
answer”. Using the available axioms and other theorems which have been proved, one needs
only to prove the conclusion logically so we can easily have as many possible answers as there
are students.

For example, if we consider even the simple example above, there are a number of ways
of transforming n*(n-1) into 2*(s+n). It is obvious then that if the assignment is a fairly difficult
proof problem, there will be a number of approaches for simply planning the proof and we can
easily find ourselves in a situation where each student has a different and correct proof solution.
Attempting to grade such kinds of exercises in a report format will require a professor to spend
a considerable amount of time reading and checking each proof variation. Furthermore, before
all students reach the goal of building a correct proof, these reports will be read, corrected, and
returned for resubmission a number of times at the cost of extraordinary amounts of time and
energy from a professor.

With proof-checker systems, we have simultaneous use by as many students as is al-
lowed by the performance and power of our computers. The proof-checker can also work on the
individual PCs of each student. The proof-checker never gets tired or emotional and is able to
mechanically check and point out errors millions of times on end until a student has finally built
a correct proof.

3. Construction plans for the Mizar library

The continued active development of the Mizar library is made possible through the efforts
of the Mizar group. Japanese university researchers are also involved in this project. Students
of the Internet graduate school described earlier also participate in this project. Prof. Yatsuka
Nakamura is involved in writing a group of library articles for the Jordan curve theory and we also
work in collaboration on a group of articles for functional analysis. The objective of the portion
of library articles I am involved with is to formalize by 2010 all of the fundamental theorems of
differential and integral calculus and functional analysis that would be studied by undergraduate
and graduate students. The areas include differentiation and integration of single- and multi-
variable real and imaginary functions, Lebesgue integration, topological linear spaces, Hilbert
spaces, Banach spaces, Lp-spaces, Sobolev spaces, theory of linear operators, finite and infi-
nite dimension equilibrium point theory, etc. The list continues to grows on, but the development
is progressing steadily bit by bit.

Without a doubt, we can expect in the future practically all mathematical theorems to be
added to the library and researchers in the areas of mathematics, mathematical sciences, and
applied mathematics will be able to write their own research results and the accompanying
proofs in Mizar. The correctness of such proofs, no matter how unknown the name of the author
is, would be checked not by persons of authority in scientific societies, but instead by instant
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computer verifications. The system of human readers would serve to judge the usefulness of
scientific results at a higher level as only humans can. Then, a truly ubiquitous environment for
academic research in mathematical science fields can be achieved.
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