
  

Formalization of Dijkstra's Shortest Path Algorithm 

 
Jingchao Chen 

 
Donghua University 

Department of Communication 
1882 Yan-an West Road, Shanghai, 200051, P. R. China 

chen-jc@dhu.edu.cn 

 
 

Abstract − This paper uses several functions in the Mizar library as basic 
operations to formalize Dijkstra's Shortest Path Algorithm, which has important 
applications in many fields, e.g., the Internet OSPF protocol.  Although 
descriptions of this algorithm abound in the literature, many articles on the topic 
are short on discussions of the rationale of this algorithm due to its complexity.  
This paper attempts to adopt a formal approach to discussing the rationale behind 
the algorithm and gives a number of useful and interesting theorems related to it.  
Some results appear for the first time in this paper. 
 
Keywords − shortest path, algorithm design and analysis, graph theory, 
computation models 

 
 

1. Introduction 
 

Given an edge-weighted graph, a source vertex s, and a target vertex t, the 
shortest path problem is to find an s-to-t path whose total length (cost) is minimum 
among all s-to-t paths.  There is a wealth of literature on this problem and many 
solutions to the problem have already been presented.  The classical solutions include 
the algorithms of Dijkstra, Bellman-Ford and Floyd-Warshall, etc.  The most 
representative is Dijkstra’s algorithm which is practical and has important applications in 
many fields, e.g., the Internet OSPF (Open Shortest Path First) protocol.  Many 
textbooks introduce this algorithm, however with respect to its correctness, only the 
proof in the intuitive sense can be found.  It is difficult to present its rigorous proof in 
natural language.  Ref. [3] presents a rigorous proof in the Mizar language.  Inspired 
by this result, the paper presents a formal definition of the algorithm.  Because the 
justification of the correctness of the algorithm is elusive, we do not focus on its 
justification.  Instead, we show several interesting and underlying theorems related to 
the algorithm.  Some of these theorems are helpful for us to understand Dijkstra’s 
algorithm. 
 
 

2.  The Review of Dijkstra’s Algorithm 
 

The underlying idea of Dijkstra’s algorithm may be described as follows. The 
algorithm starts with a source s.  It visits the vertices in order of increasing length and 
maintains a set V of visited vertices whose total length from the source has been 
computed and a tentative length L(u) to each unvisited vertex u.  In fact, L(u) is the 
length of the shortest path from the source to u in the subgraph induced by V  ∪ {u}.  
Dijkstra's algorithm repeatedly searches the unvisited vertices for the vertex with 
minimum tentative length, adds it to the set V and modifies L-values by a procedure 
                                                  
  Manuscript received January 31, 2005; revised May 13, 2005. 



called Relax.  Suppose the unvisited vertex with minimum tentative length is x, the 
procedure Relax replaces L(u) with min{L(u), L(u)+length(x,u)} where u is an unvisited 
vertex and length(x, u) is the length of edge (x, u).  Below we outline this algorithm in 
PASCAL-like pseudo-code. 
 
     Dijkstra_algorithm(G(V,E), s) 
      begin     
(1)       for each vertex v ∈ V[G] do   
(2)                 L[v]:=∞ 
(3)                P[v]:=NIL 
(4)       L[s]:=0 
(5)       S:=φ  
(6)      while S ≠ V do 
(7)              find um ∈ V− S such that L[um ]= min {L[v] | v ∈ V − S } 
(8)              S := S+{ um } 
(9)              for each outgoing edge of um,  (um, v) ∈ E do  
                             Relax(um, v) 
      end                                                                         
 
Relax(u, v) 
begin 
     if L(v] > L[u]+length(u, v) then 
              L(v] := L[u]+length(u, v) 
              P[v]:= u 
end 
 

Lines (1)-(5) initialize the relevant variables.  Variable S keeps the set of visited 
vertices.  The set of unvisited vertices can be computed by V − S.  The initial value of 
S is empty.  For each vertex v ∈ V, we maintain the variable L[v], initially +∞ (v ≠ u), 
which is the length of the shortest path from the source s to u in the subgraph visited so 
far.  The path is stored by the variable P[v] which keeps the immediately preceding 
vertex (called the predecessor) of v on the path.  At the end of the algorithm, we can 
recover the path by tracing the variable P starting from t through all intermediate vertices 
until reaching the source s.  
 
 

3. Basic Theorems Related to Dijkstra’s Algorithm 
 

In an edge-weighted graph, even though there exists a directed path from vertex s 
to vertex t, we cannot ensure that a shortest s-to-t path exists in the following two cases. 

 
(1) The number of vertices is infinite. 
(2) The edge lengths (costs) are negative. 

 
Below we give an example to show that no shortest path exists in case (1).  In Fig.1, the 
set of vertices E equals {s, t} ∪ NAT, where NAT is the set of natural numbers excluding 0.  
With respect to the length of each edge, we have length(s, n) = length(n, t) =1/n where n 
is a positive natural number.  Clearly, we cannot find the shortest path from vertex s to 
vertex t because for m > n, we have length(s-n-t) = 2/n > 2/m = length(s-m-t), i.e., for any 
path s → n →t, we can always find a shorter path, s → m → t. 



  

 s
1 1

1/2

1/n
1/n

1/2

1

2

n

 t

 
Figure 1.  A graph in which there is no s-to-t shortest path. 

 
In case (2), it is easy to find an example in which there is no shortest path.  

Assume that a graph has two edges where length(s, t) =length(t, s) = −1.  Let (s-t-s)n  
denote n cycles, each of which starts with s, passes through t, and finally reaches s. 
Then, path (s-t-s)n-t has length of  −2n−1.  Hence, when n → ∞, it tends towards −∞.  
In other words, any s-t path with finite length is not a shortest path from s to t. 
     In this paper, we denote an edge-weighted graph by G(V, E, W), where V is the set 
of vertices, E is the set of edges interconnecting them, and W is a weight function from 
E to R+ (non-negative real numbers), i.e., W: E → R+.  Below we define the cost of a 
path, the shortest path, and other related concepts.       
 
Definition 3-1.  Let p =v1 → v2 →,…,→ vn be a directed path of G(V, E, W) and W(i, 
i+1) be the length of edge (vi, vi+1).  The cost of p is defined as  

n −1 
cost(p) = ∑  W(i, i+1). 

i=1 

 

Definition 3-2.  Let p be a directed path of G(V, E, W), s a source vertex, and t a target 
vertex.  p is a shortest path from s to t  iff  for any directed path q from s to t, we have 
cost(p) ≤ cost(q). 
 
Definition 3-3.  Let p be a directed path of G(V, E, W), s a source vertex, and t a target 
vertex.  cost(p) is an upper bound on the shortest distance from s to any vertex of U in 
the subgraph induced by U  iff  for any t in U and any directed s-to-t path q in the 
subgraph induced by U , we have cost(q) ≤ cost(p). 
 
Definition 3-4.  Let p be a directed path of G(V, E, W) and s a source vertex of p.  p is 
a shortest s-to-t path in the subgraph induced by U ∪ {t}  iff  for any directed s-to-t path 
q in the subgraph induced by U ∪ {t} path, we have cost(p) ≤ cost(q). 
 
In [2], we formally justified the following theorems.  Because the focus of this paper is 
limited to the discussion of shortest paths, hereafter, without confusion, a graph refers to 
one that has finite vertices and non-negative edge lengths. 
 
 



Theorem 3-1.  For a graph with finite vertices and non-negative edge lengths, if there 
exists a directed path from vertex s to vertex t, then there exists a shortest s-to-t path. 
 
Theorem 3-2.  Given a graph G(V, E, W), vertices v1 and v2, a subset U of V, and a 
directed path p, if 

(1) v1 ≠ v2 ;  
(2) p is a shortest v1-to-v2 path in the subgraph induced by U ∪ {v2}; and 
(3) for any directed path q and any v in V, if u is not in U and q is a shortest 

v1-to-u path in the subgraph induced by U ∪ {u}, then cost(p) ≤ cost(q) ; 
then p is a shortest v1-to-v2 path. 
 
Theorem 3-3.  Given a graph G(V, E, W), vertices v1 and v2, subsets U 1 and U2 of V, 
and a directed path p, if 

(1) v1 ≠ v2 and U1 ⊆ U2;  
(2) p is a shortest v1-to-v2 path in the subgraph induced by U1  ∪ {v2}; and 
(3) for any directed path q and any v in V, if u is not in U1 and q is a shortest 

v1-to-u path in the subgraph induced by U1 ∪ {u}, then cost(p) ≤ cost(q) ; 
then p is a shortest v1-to-v2 path in the subgraph induced by U2 ∪ {v2}. 
 
Theorem 3-4.  Given a graph G(V, E, W), vertices v1, v2, v3, a subset U of V, and 
directed paths p, q and r, if 

(1) v1 ≠ v2 and v1 ≠ v3;  
(2) p is a non-empty shortest v1-to-v2 path in the subgraph induced by U ∪ {v2}; 
(3) q is a shortest v1-to-v3 path in the subgraph induced by U ∪ {v3}; 
(4) cost(p) is an upper bound on the shortest distance from v1 to any vertex of U 

in the subgraph induced by U; and 
(5) Edge(v2, v3) is in E and r = p^ v3, where p^ v3 denotes a path extending p to 

v3; 
 then we can conclude: 

(A) cost(q) ≤ cost(r) implies q is a shortest v1-to-v3 path in the subgraph 
induced by U ∪ {v3}; 

(B) cost(q) ≥ cost(r) implies r is a shortest v1-to-v3 path in the subgraph induced 
by U ∪ {v3}. 

 
In [3], we formally justified Theorems 3-5 to 3-8 below.  
 
Theorem 3-5.  Given a graph G(V, E, W), vertices v1, v2, v3, a subset U of V, and 
directed paths p and q, if  

(1) v1 ≠ v2 and v1 ≠ v3;  
(2) p is a shortest v1-to-v2 path in the subgraph induced by U ∪ {v2}; 
(3) q is a shortest v1-to-v3 path in the subgraph induced by U ∪ {v3}; 
(4) Edge(v2,v3) is not in E; and 
(5) cost(p) is an upper bound on the shortest distance from v1 to any vertex of 

U in the subgraph induced by U; 
then q is a shortest v1-to-v3 path in the subgraph induced by U ∪ {v2, v3}. 
 
Theorem 3-6.  Given a graph G(V, E, W) and vertices v1 and v2, if Edge(v1,v2) is in E,  
then Edge(v1,v2) is a shortest v1-to-v2 path in the subgraph induced by {v1, v2}. 
 
 
 
 
 



  

Theorem 3-7.  Given a graph G(V, E, W), vertices v1, v2, v3, a subset U of V, and a 
directed path p, if 
   (1) v1 ≠ v3;  
   (2) p is a shortest v1-to-v2 path in the subgraph induced by U ∪ {v2}; 
   (3) Edge(v2, v3) is in E; and 
   (4) for any v in U, Edge(v,v3) is not in E; 
then p^v3 is a shortest v1-to-v3 path in the subgraph induced by U ∪ {v2,v3}. 
 
Theorem 3-8.  Given a graph G(V, E, W), vertices v1 and v2, subsets U1 and U2 of V, 
and a directed path p, if 

(1) V = U1 ∪ U2;  
(2) v1 in U1; and 
(3) for any u in U1 and any v in U2, Edge(u, v) is not in E; 

then p is a shortest v1-to-v2 path in the subgraph induced by U1 ∪ {v2}  iff  p is a 
shortest v1-to-v2 path. 
 
 

4. Data Structure for Dijkstra’s Algorithm 
 

As shown in Section 2, the main procedure of Dijkstra’s algorithm needs to 
maintain three kinds of data:  a set S of visited vertices whose distances from the 
source have been computed, a tentative (or final) distance L(v) to each vertex v, and the 
predecessor P[v] of v.  Procedure Relax needs to employ the length information of 
each edge, denoted by length[u,v].  In addition, in line (7), um in the formula L[um]=min 
{L[v] | v ∈ V − S } requires a workspace.  We use the concept of finite sequences [4] in 
the Mizar library to store these variables and arrays.  Suppose that the set of vertices is 
the natural numbers from 1 to n and a finite sequence f is of length n2+3n+1.  Fig. 2 
shows how to use the sequence f to store the variables and arrays.  The first n items 
are used to store S, i.e., S[1]=f[1],…,S[n]=f[n].  The next n items store P[v], i.e., 
P[1]=f[n+1],…,P[n]=f[2n].  Then, L[v] is stored, i.e., L[1]=f[2n+1],…,L[n]=f[3n].  Finally, 
length[u,v] is stored, i.e., length[1,1]=f[3n+1],…,length[1,n]=f[4n],…,length[n, n]=f[n2+3n ].  
The last item stores um where L[um]=min {L[v] | v ∈ V − S }, i.e., um = f[n2+3n+ 1]. 
 

  1   n   n+1   2n  2n+1  3n  3n+1

  S   P[v]   L[v]   length(u,v)

    f

  n2+3n

  um

  
                 Figure 2.  Data structure for Dijkstra’s algorithm. 
 
    The value of S[i] is set as follows.  S[i] = −1 if the i-th vertex is visited and S[i] = 1 
otherwise.  The initial value of P[i] is set to −1, except for P[1]=0.  The initial value of 
L[i] is set to 0.  In the Mizar Library, there is no concept of ∞ (how to formalize ∞ is still 
an open problem in Mizar).  Consequently, when Edge[u, v] is not in E(G), we set 
length[u, v] =−1, instead of −∞, since we assume that when Edge[u, v] is in E(G), 
length[u, v] ≥ 0.  In [3], we initialize the above data structure formally as follows: 
    
 
   Seg n=the Vertices of G & 



       (for i st 1 <= i & i <= n holds f.i=1 & f.(2*n+i)=0) & 
       f.(n+1)=0 & (for i st 2 <= i & i <= n holds f.(n+i)=-1) & 
       (for i,j being Vertex of G,k,m st k=i & m=j holds f.(2*n+n*k+m)=Weight(i,j,W)) 
 
where i, j, k, and n are natural numbers. 
 
 

5.   Formalization of Dijkstra’s Algorithm 
 

In the Mizar library, there are several computer models, e.g., SCMFSA [5] and 
SCMPDS [6], etc.  However, it is extremely difficult to use these models to formalize 
Dijkstra’s algorithm.  On the other hand, these computer models are based on some 
formalized functions in the Mizar library.  Each instruction in the models corresponds to 
a function which transforms a memory state into another memory state.  Assuming that 
the set of states is S, an instruction can be regarded as F : S → S.  In theory, it is 
possible to implement the formalization of algorithms.  In fact, in high-level 
programming languages, there are also similar examples.  For instance, Lisp is a 
functional programming language.  Furthermore, the Mizar library has a wealth of 
formalized functions.  Consequently, we decided to use Mizar functions to formalize 
Dijkstra’s algorithm.  The advantage of this formalization is the improvement of 
readability, since one will see that functions used in this formalization look like 
pseudo-codes.  Below we formalize Dijkstra’s algorithm in the Mizar language. 
 
definition  let n be Nat; 
  func DijkstraAlgorithm(n) -> Element of Funcs(REAL*,REAL*)  equals 
        while_do(Relax(n)*findmin(n),n); 
end; 
 
In this definition, findmin corresponds to lines (7) and (8) of Dijkstra_algorithm.  Relax 
corresponds to procedure Relax.  REAL* is the set of finite real sequences, which can 
be used to denote the set of f’s defined in the previous section.  Functor while_do, 
which corresponds to the “while do” statement of Pascal, is defined as follows. 
 
definition let f be Element of Funcs(REAL*,REAL*), n be Nat; 
  func while_do(f, n) -> Element of Funcs(REAL*,REAL*) means 
     dom it=REAL* & for h being Element of REAL* holds 
      it.h=(repeat f).LifeSpan(f, h, n).h; 
end; 
 
definition let X be set, f be Element of Funcs(X,X); 
  func repeat(f) -> Function of NAT,Funcs(X,X) means 
   it.0 = id X &  
   for i being Nat, x being Element of Funcs(X,X) st x = it.i holds  it.(i+1)=f*x; 
end; 
 
 
 
 
 
 
 
 definition  
   let f be Element of Funcs(REAL*,REAL*), g be Element of REAL*, n be Nat; 
  assume  ex i st OuterVx((repeat f).i.g,n) = {}; 



  

  func LifeSpan(f,g,n) -> Nat means 
    OuterVx((repeat f).it.g,n) = {} & 
    for k being Nat st OuterVx((repeat f).k.g,n) = {} holds it <= k; 
end; 
 
definition let f be Element of REAL*, n be Nat; 
  func OuterVx(f, n) -> Subset of NAT equals 
   {i: i in dom f & 1 <= i & i <= n & f.i <> -1 & f.(n+i) <> -1}; 
end; 
 
Here OuterVx denotes the set of unvisited vertices, each of which has an edge 
connecting it with some already visited vertex.  Namely, for v ∈ OuterVx, there exists u 
∈ S such that edge(u, v) ∈ E(G).  The following is the definition of findmin. 
 
definition let n be Nat; 
  func findmin(n)  ->  Element of Funcs(REAL*,REAL*) means 
   dom it = REAL* & for f be Element of REAL* holds it.f= 
    (f,  n*n+3*n+1) := (Argmin(OuterVx(f,n), f, n), -1); 
end; 
 
definition let x,y be set,f be Function; 
  func (f,x):=y -> Function means 
     dom it = dom f & (for z st z in dom f & z <> x holds it.z=f.z) & 
    (x in dom f implies it.x=y); 
end; 
 
definition let i,k be Nat,f be FinSequence of REAL,r be Real; 
  func (f,i):=(k,r) -> FinSequence of REAL equals 
  ((f,i):=k,k):=r; 
end; 
 
Here functor := is similar to the assignment statement in high-level programming 
languages.  Argmin is responsible for finding um ∈ X such that L[um ]= min {L[v] | v ∈ 
X}, which is defined as follows. 
 
definition let X be finite Subset of NAT, f be Element of REAL*,n; 
  func Argmin(X, f, n) -> Nat means 
    (X<>{} implies ex i st i=it & i in X & 
    (for k st k in X holds f/.(2*n+i) <= f/.(2*n+k)) & 
    (for k st k in X & f/.(2*n+i) = f/.(2*n+k) holds i <= k)) & (X={} implies it=0); 
end; 
 
The following is the definition of Relax. 
 
definition let n be Nat; 
  func Relax(n) -> Element of Funcs(REAL*,REAL*) means 
   dom it = REAL* & for f be Element of REAL* holds it.f=Relax(f,n); 
end; 
 
 
 
definition let f be Element of REAL*,n be Nat; 
  func Relax(f,n) -> Element of REAL* means 
    dom it = dom f &  for k be Nat st k in dom f holds 



    (n<k & k <= 2*n implies  
          (f hasBetterPathAt n,(k-'n) implies it.k=f/.(n*n+3*n+1)) &  
          (not f hasBetterPathAt n,(k-'n)  implies it.k=f.k)) & 
    (2*n <k & k <=3*n implies  
          (f hasBetterPathAt n,(k-'2*n) implies it.k=newpathcost(f,n,k-'2*n)) &  
          (not f hasBetterPathAt n,(k-'2*n)  implies it.k=f.k)) & 
    (k<=n or k > 3*n implies it.k=f.k); 
end; 
 
definition let n,k be Nat,f be Element of REAL*; 
  pred f hasBetterPathAt n,k means 
  (f.(n+k)=-1 or f/.(2*n+k) > newpathcost(f,n,k)) & 
   f/.(2*n+n*(f/.(n*n+3*n+1))+k) >= 0 & f.k <> -1; 
end; 
 
It is easy to see that each function above can be implemented by a regular computer. 
Therefore, the definitions above are of practical significance.  Ref. [3] proved the 
following theorem which shows the meaning of Dijkstra’s algorithm. 
 
Theorem 5-1.  Given a graph G(V, E, W), vertices v1, v2, and a natural number n, let f 
be a finite real sequence which is initialized according to initial data structure defined in 
Section 4 (i.e., each item of f is of the value shown in Section 4) and g a finite real 
sequence which stores the final result.  If V = {i | 1≤ i ≤ n}, v1 = 1, and g = 
(DijkstraAlgorithm(n)).f; then 
 

(A) v2 ∈ V and f.v2 = −1 (i.e., v2 is a visited vertex)  implies ∃ p p is a v1-to-v2 
shortest path, cost(p)= g.(2n+v2) and p can be computed by tracing the 
value stored in g starting from v2, through all intermediate vertices until 
reaching the source v1, i.e., p[m] = v2, p[m-1] = g.(n+ p[m]), p[m-2] = g.(n+ 
p[m-1]),…, p[1] = v1, where m is the length of p and p[i] (1≤ i ≤ n) is the i-th 
vertex of p; and 

 
(B) v2 ∈ V and f.v2 = 1 (i.e., v2 is an unvisited vertex) implies not ∃ p p is a 

v1-to-v2 directed path. 
 
In this theorem, f can usually be regarded as the input of Dijkstra’s algorithm and g the 
output of Dijkstra’s algorithm.  
 
 

6. Conclusion 
 

Dijkstra’s shortest path algorithm is a common and practical algorithm.  It is very 
simple to implement it with C or PASCAL.  However, it is difficult to rigorously justify its 
correctness in natural language.  Ref. [3] achieved this goal in the Mizar language.   
This paper first re-reviewed the algorithm in a Pascal-like pseudo-coded fashion, then 
re-described the formal definition of the algorithm given in [3].  We also presented 
several theorems used to prove the correctness of the algorithm.  When formalizing 
algorithms, we found that formalizing the time and space complexity of an algorithm is 
an extremely difficult task even if it is a very simple algorithm.  This will be an open 
problem. 

References 
 
[1]  E. W. Dijkstra, A note on two problems in connexion with graphs, In Numer. Math.,1, 



  

1959, pp.260-271. 
[2]  J. C. Chen, Y. Nakamura, The Underlying Principle of Dijkstra's Shortest Path Algorithm, 

Journal of Formalized Mathematics, Vol.15, 2003.  
[3]  J. C. Chen, Dijkstra's Shortest Path Algorithm, Formalized Mathematics, Vol. 11(3), 

2003, pp.237-247. 
[4]  G. Bancerek, K. Hryniewiecki, Segments of Natural Numbers and Finite Sequences, 

Formalized Mathematics, 1(1),1990, pp.107-114. 
[5]  A. Trybulec, Y. Nakamura, and P. Rudnicki, An Extension of SCM, Formalized 

Mathematics, Vol. 5(4), 1996, pp.507-512, http://mizar.org//JFM/Vol8/scmfsa_3.html. 
[6]  J. C. Chen, A Small Computer Model with Push-Down Stack, Formalized Mathematics, 

Vol. 8(1), 1999, pp.175-182, http://mizar.org//JFM/Vol11/scmpds_1.html.  
 
 
 
 


	References

