
MECHANIZED MATHEMATICS AND ITS APPLICATIONS, VOL. 6, NO. 1, NOVEMBER 2007, 1:14

On the Formalization of Linear Operators

Noboru Endou Yasunari Shidama

Shinshu University, Faculty of Engineering
Nagano-ken Nagano-shi Wakasato 4-17-1 380-8553 Japan
endon@gifu-nct.ac.jp, shidama@cs.shinshu-u.ac.jp

Abstract – In this paper, we report the progress of our work on the development of a library on
linear operators within the Mizar project. The definitions of concepts including normed linear spaces
of bounded linear operators and completeness of such spaces are contained in this library.

1. Introduction

Until the 1970s, research on linear operators held a central role in the work of functional
analysis and today its importance is unchanged. Linear operators appear not only in pure math-
ematics, but they also serve important roles in a wide range of areas of applied mathematics,
physics, and engineering. For example, in engineering control theory, linear control theory by
Kalman was developed by taking the theory of matrices, the most important example of bounded
linear operators, and expanding it to control theory with developing systems of equations by Li-
ons which uses unbounded partial differentiation operators. In this work, the authors are actively
involved in the contruction of Mizar library articles concerning analysis. They have contributed
the LOPBAN series articles [1]–[4] and the versions for complex numbers in the CLOPBAN se-
ries [5]–[8] to construct a library for handling linear structures and normed structures of spaces
generated by families of bounded (continuous) linear operators. The present objective will be
to continue formalizing material in this area until the Yoshida-Hille C0 semi-groups are covered.
This paper outlines the formalization and reports the work completed thus far.

2. Outline of Formalization

2.1 Spaces Created by Bounded Linear Operators

It is known that mappings f ,g from a set X to a space Y having a real linear space struc-
ture can be defined. We can also define for a real number r, addition f +g and zero dimensional
scalar multiplication r f operations. We begin with the formalization of these concepts.

definition
let X be set;
let Y be non empty set;
let F be Function of [:REAL, Y:], Y;
let a be real number, f be Function of X, Y;
redefine func F[;](a,f) -> Element of Funcs(X, Y);

end;
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theorem :: LOPBAN_1:1
for X be non empty set for Y be non empty LoopStr
ex ADD be BinOp of Funcs(X,the carrier of Y) st

for f,g being Element of Funcs(X,the carrier of Y)
holds ADD.(f,g)=(the add of Y).:(f,g);

theorem :: LOPBAN_1:2
for X be non empty set, Y be RealLinearSpace
ex MULT be Function of

[:REAL, Funcs(X,the carrier of Y):], Funcs(X,the carrier of Y) st
for r be Real, f be Element of Funcs(X,the carrier of Y) holds
for s be Element of X holds (MULT.[r,f]).s = r*(f.s);

definition
let X be non empty set;
let Y be non empty LoopStr;
func FuncAdd(X,Y) -> BinOp of Funcs(X,the carrier of Y) means

:: LOPBAN_1:def 1
for f,g being Element of Funcs(X,the carrier of Y) holds
it.(f,g) = (the add of Y).:(f,g);

end;

definition
let X be non empty set;
let Y be RealLinearSpace;
func FuncExtMult(X,Y) -> Function of [:REAL,Funcs(X,the carrier of Y):],

Funcs(X,the carrier of Y) means
:: LOPBAN_1:def 2

for a being Real,
f being Element of Funcs(X,the carrier of Y),
x being Element of X holds
(it.[a,f]).x = a*(f.x);

end;

definition
let X be set;
let Y be non empty ZeroStr;
func FuncZero(X,Y) -> Element of Funcs (X,the carrier of Y) equals

:: LOPBAN_1:def 3
X --> 0.Y;

end;
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Based on the definitions of these operations, we introduced a functor for expressing real
linear spaces created by the entire mapping X to Y as shown below.

definition
let X be non empty set;
let Y be RealLinearSpace;
func RealVectSpace(X,Y) -> RealLinearSpace equals

:: LOPBAN_1:def 4
RLSStruct(#Funcs(X,the carrier of Y),

(FuncZero(X,Y)),FuncAdd(X,Y),FuncExtMult(X,Y)#);
end;

theorem :: LOPBAN_1:14
for X be non empty set
for Y be RealLinearSpace
for f,g,h be VECTOR of RealVectSpace(X,Y) holds

h = f+g iff for x be Element of X holds h.x = f.x + g.x;

theorem :: LOPBAN_1:15
for X be non empty set
for Y be RealLinearSpace
for f,h be VECTOR of RealVectSpace(X,Y)
for a be Real holds

h = a*f iff for x be Element of X holds h.x = a * f.x;

theorem :: LOPBAN_1:16
for X be non empty set
for Y be RealLinearSpace holds 0.RealVectSpace(X,Y) = X --> 0.Y;

For a mapping f from a space X to Y with real linear space structures, when we have lin-
earity of addition, the additive attribute, and homogeniety of scalar multiplication, the homogeneous
attribute, we call this a linear mapping. In the following, we show the formalization of these map-
ping attributes and introduce them as type variables, or modes, for linear operators.

definition
let X be non empty RLSStruct;
let Y be non empty LoopStr;
let IT be Function of X, Y;
attr IT is additive means

:: LOPBAN_1:def 5
for x,y being VECTOR of X holds IT.(x+y) = IT.x+IT.y;
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end;

definition
let X, Y be non empty RLSStruct;
let IT be Function of X,Y;
attr IT is homogeneous means

:: LOPBAN_1:def 6
for x being VECTOR of X, r being Real holds IT.(r*x) = r*IT.x;

end;

registration
let X be non empty RLSStruct;
let Y be RealLinearSpace;
cluster additive homogeneous Function of X,Y;

end;

definition
let X, Y be RealLinearSpace;
mode LinearOperator of X,Y is additive homogeneous Function of X,Y;

end;

To treat the set of all linear operators, we introduce a functor called LinearOperators for-
malized as follows.

definition
let X, Y be RealLinearSpace;
func LinearOperators(X,Y) -> Subset of

RealVectSpace(the carrier of X, Y) means
:: LOPBAN_1:def 7

for x being set holds x in it
iff

x is LinearOperator of X,Y;
end;

Since LinearOperators(X ,Y ) forms a linearly closed subset of the real linear space
RealVectSpace(X ,Y ) generated by the entire mapping of X to Y mentioned earlier, we can
introduce a real linear space structure, a subspace of RealVectSpace(X ,Y ), which uses the
set of all linear operators from real linear space X to Y as a base set. The formalization of this
procedure is shown below.

We begin by introducing a real linear space using a functor called
R_VectorSpace_o f _LinearOperators(X ,Y ).

theorem :: LOPBAN_1:17
for X, Y be RealLinearSpace holds LinearOperators(X,Y) is lineary-closed;
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theorem :: LOPBAN_1:18
for X, Y be RealLinearSpace holds

RLSStruct (# LinearOperators(X,Y),
Zero_(LinearOperators(X,Y),RealVectSpace(the carrier of X,Y)),
Add_(LinearOperators(X,Y), RealVectSpace(the carrier of X,Y)),
Mult_(LinearOperators(X,Y), RealVectSpace(the carrier of X,Y)) #)

is Subspace of RealVectSpace(the carrier of X,Y);

registration
let X, Y be RealLinearSpace;
cluster RLSStruct (# LinearOperators(X,Y),

Zero_(LinearOperators(X,Y),RealVectSpace(the carrier of X,Y)),
Add_(LinearOperators(X,Y), RealVectSpace(the carrier of X,Y)),
Mult_(LinearOperators(X,Y), RealVectSpace(the carrier of X,Y)) #)

-> Abelian add-associative right_zeroed right_complementable
RealLinearSpace-like;

end;

definition
let X, Y be RealLinearSpace;
func R_VectorSpace_of_LinearOperators(X,Y) -> RealLinearSpace equals

:: LOPBAN_1:def 8
RLSStruct (# LinearOperators(X,Y),

Zero_(LinearOperators(X,Y),RealVectSpace(the carrier of X,Y)),
Add_(LinearOperators(X,Y), RealVectSpace(the carrier of X,Y)),
Mult_(LinearOperators(X,Y), RealVectSpace(the carrier of X,Y))

#);
end;

Next, we define the boundedness of linear operators as an attribute in the same way as
linearity. We introduce the set of all bounded linear operators as a functor.

definition
let X, Y be RealNormSpace;
let IT be LinearOperator of X,Y;
attr IT is bounded means

:: LOPBAN_1:def 9
ex K being Real st 0 <= K &
for x being VECTOR of X holds

||. IT.x .|| <= K * ||. x .||;
end;

definition
let X, Y be RealNormSpace;
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func BoundedLinearOperators(X,Y) ->
Subset of R_VectorSpace_of_LinearOperators(X,Y) means

:: LOPBAN_1:def 10
for x being set holds x in it

iff
x is bounded LinearOperator of X,Y;

end;

Since this forms a closed subset of R_VectorSpace_o f _LinearOperators(X ,Y ) intro-
duced above, we can repeat the procedure mentioned earlier and introduce a real linear space
structure which uses the set of all bounded linear operators from real linear space X to Y as a
base set in a similar way. The steps for this formalization are shown below.

We introduce a real linear space using a functor called
R_VectorSpace_o f _BoundedLinearOperators(X ,Y ).

theorem :: LOPBAN_1:26
for X, Y be RealNormSpace holds
BoundedLinearOperators(X,Y) is lineary-closed;

theorem :: LOPBAN_1:27
for X, Y be RealNormSpace holds

RLSStruct (# BoundedLinearOperators(X,Y),
Zero_(BoundedLinearOperators(X,Y),
R_VectorSpace_of_LinearOperators(X,Y)),
Add_(BoundedLinearOperators(X,Y),
R_VectorSpace_of_LinearOperators(X,Y)),

Mult_(BoundedLinearOperators(X,Y),
R_VectorSpace_of_LinearOperators(X,Y)) #)

is Subspace of R_VectorSpace_of_LinearOperators(X,Y);

registration
let X, Y be RealNormSpace;
cluster RLSStruct (# BoundedLinearOperators(X,Y),

Zero_(BoundedLinearOperators(X,Y),
R_VectorSpace_of_LinearOperators(X,Y)),
Add_(BoundedLinearOperators(X,Y),
R_VectorSpace_of_LinearOperators(X,Y)),

Mult_(BoundedLinearOperators(X,Y),
R_VectorSpace_of_LinearOperators(X,Y)) #)

-> Abelian add-associative right_zeroed right_complementable
RealLinearSpace-like;

end;
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definition
let X, Y be RealNormSpace;
func R_VectorSpace_of_BoundedLinearOperators(X,Y) -> RealLinearSpace

equals
:: LOPBAN_1:def 11

RLSStruct (# BoundedLinearOperators(X,Y),
Zero_(BoundedLinearOperators(X,Y),
R_VectorSpace_of_LinearOperators(X,Y)),
Add_(BoundedLinearOperators(X,Y),
R_VectorSpace_of_LinearOperators(X,Y)),

Mult_(BoundedLinearOperators(X,Y),
R_VectorSpace_of_LinearOperators(X,Y)) #);

end;

It is known that we can define a norm for bounded linear operators u and we formalize it
below.

definition
let X, Y be RealNormSpace;
let u be LinearOperator of X,Y;
func PreNorms(u) -> non empty Subset of REAL equals

:: LOPBAN_1:def 13
{||.u.t.|| where t is VECTOR of X : ||.t.|| <= 1 };

end;

theorem :: LOPBAN_1:32
for X, Y be RealNormSpace
for g be bounded LinearOperator of X,Y
holds PreNorms(g) is non empty bounded_above;

theorem :: LOPBAN_1:33
for X, Y be RealNormSpace

for g be LinearOperator of X,Y
holds g is bounded iff PreNorms(g) is bounded_above;

theorem :: LOPBAN_1:34
for X, Y be RealNormSpace
ex NORM be Function of BoundedLinearOperators(X,Y),REAL st

for f be set st f in BoundedLinearOperators(X,Y) holds
NORM.f = sup PreNorms(modetrans(f,X,Y));

definition
let X, Y be RealNormSpace;
func BoundedLinearOperatorsNorm(X,Y)
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-> Function of BoundedLinearOperators(X,Y), REAL means
:: LOPBAN_1:def 14

for x be set st x in BoundedLinearOperators(X,Y) holds
it.x = sup PreNorms(modetrans(x,X,Y));

end;

theorem :: LOPBAN_1:35
for X, Y be RealNormSpace
for f be bounded LinearOperator of X,Y holds modetrans(f,X,Y)=f;

theorem :: LOPBAN_1:36
for X, Y be RealNormSpace
for f be bounded LinearOperator of X,Y holds
BoundedLinearOperatorsNorm(X,Y).f = sup PreNorms(f);

From the formalization steps above, we can define a real normed linear space structure
which uses the set of all bounded linear operators from real linear space X to Y as a base set.
It is introduced as a functor

R_NormSpace_o f _BoundedLinearOperators(X ,Y ).

definition let X, Y be RealNormSpace;
func R_NormSpace_of_BoundedLinearOperators(X,Y) -> non empty NORMSTR equals
:: LOPBAN_1:def 15

NORMSTR (# BoundedLinearOperators(X,Y),
Zero_(BoundedLinearOperators(X,Y),
R_VectorSpace_of_LinearOperators(X,Y)),
Add_(BoundedLinearOperators(X,Y),
R_VectorSpace_of_LinearOperators(X,Y)),
Mult_(BoundedLinearOperators(X,Y),
R_VectorSpace_of_LinearOperators(X,Y)),
BoundedLinearOperatorsNorm(X,Y) #);

end;

If Y is a Banach space in this real normed space, we know that it is also complete and
this is formalized as follows.

theorem :: LOPBAN_1:49
for X be RealNormSpace
for Y be RealBanachSpace holds

R_NormSpace_of_BoundedLinearOperators(X,Y) is RealBanachSpace;

registration
let X be RealNormSpace;
let Y be RealBanachSpace;
cluster R_NormSpace_of_BoundedLinearOperators (X,Y) -> complete;

end;
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2.2 Banach Algebra Created by Linear Operators

If we restrict the formalization of the previous section to the case of X=Y and linear oper-
ators from X to X itself, syntheses consisting of f ,g mappings of linear operators form multipli-
cation operations on BoundedLinearOperators(X ,X) introduced earlier. Therefore, the identity
mapping of X onto itself becomes the unit source for this multiplication. From this, we can in-
troduce a normed ring structure which uses BoundedLinearOperators(X ,X) as a base. The
formalization steps are shown below.

definition let X be RealNormSpace;
func FuncMult(X) -> BinOp of BoundedLinearOperators(X,X) means

:: LOPBAN_2:def 4
for f,g being Element of BoundedLinearOperators(X,X) holds
it.(f,g) = f*g;

end;

theorem :: LOPBAN_2:3
for X be RealNormSpace holds
id (the carrier of X) is bounded LinearOperator of X,X;

definition let X be RealNormSpace;
func FuncUnit(X) -> Element of BoundedLinearOperators(X,X) equals

:: LOPBAN_2:def 5
id (the carrier of X);

end;

theorem :: LOPBAN_2:4
for X be RealNormSpace
for f,g,h be bounded LinearOperator of X,X holds
h = f*g iff for x be VECTOR of X holds h.x = f.(g.x);

theorem :: LOPBAN_2:5
for X be RealNormSpace
for f,g,h be bounded LinearOperator of X,X
holds f*(g*h) =(f*g)*h;

theorem :: LOPBAN_2:6
for X be RealNormSpace
for f be bounded LinearOperator of X,X holds
f*(id the carrier of X) = f & (id the carrier of X )*f=f;

theorem :: LOPBAN_2:7
for X be RealNormSpace
for f,g,h be Element of BoundedLinearOperators(X,X)
holds f*(g*h) =(f*g)*h;
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theorem :: LOPBAN_2:8
for X be RealNormSpace
for f be Element of BoundedLinearOperators(X,X) holds
f*FuncUnit(X)= f & FuncUnit(X)*f=f;

theorem :: LOPBAN_2:9
for X be RealNormSpace
for f,g,h be Element of BoundedLinearOperators(X,X) holds
f *(g+h)=f*g + f*h;

theorem :: LOPBAN_2:10
for X be RealNormSpace
for f,g,h be Element of BoundedLinearOperators(X,X) holds
(g+h)*f = g*f + h*f;

theorem :: LOPBAN_2:11
for X be RealNormSpace
for f,g be Element of BoundedLinearOperators(X,X)
for a,b be Real holds
(a*b)*(f*g)=(a*f)*(b*g);

theorem :: LOPBAN_2:12
for X be RealNormSpace
for f,g be Element of BoundedLinearOperators(X,X)
for a be Real holds
a*(f*g) =(a*f)*g;

definition
let X be RealNormSpace;

func Ring_of_BoundedLinearOperators(X) -> doubleLoopStr equals
:: LOPBAN_2:def 6

doubleLoopStr
(# BoundedLinearOperators(X,X),

Add_(BoundedLinearOperators(X,X),
R_VectorSpace_of_LinearOperators(X,X)),

FuncMult(X),
FuncUnit(X),
Zero_(BoundedLinearOperators(X,X),

R_VectorSpace_of_LinearOperators(X,X))
#);

end;

definition
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let X be RealNormSpace;
func Ring_of_BoundedLinearOperators(X) -> doubleLoopStr equals

:: LOPBAN_2:def 6
doubleLoopStr
(# BoundedLinearOperators(X,X),

Add_(BoundedLinearOperators(X,X),
R_VectorSpace_of_LinearOperators(X,X)),

FuncMult(X),
FuncUnit(X),
Zero_(BoundedLinearOperators(X,X),

R_VectorSpace_of_LinearOperators(X,X))
#);

end;

In continuation of the above formalization, we introduce NormedAlgebra as a functor
called R_Normed_Algebra_o f _BoundedLinearOperators(X) and particularly in the case of
X being a Banach space, we formalize the fact that this space is a BanachAlgebra.

definition
let X be RealNormSpace;
func R_Normed_Algebra_of_BoundedLinearOperators(X) -> Normed_AlgebraStr
equals
:: LOPBAN_2:def 8

Normed_AlgebraStr
(# BoundedLinearOperators(X,X),

FuncMult(X),
Add_(BoundedLinearOperators(X,X),

R_VectorSpace_of_LinearOperators(X,X)),
Mult_(BoundedLinearOperators(X,X),

R_VectorSpace_of_LinearOperators(X,X)),
FuncUnit(X),
Zero_(BoundedLinearOperators(X,X),

R_VectorSpace_of_LinearOperators(X,X)),
BoundedLinearOperatorsNorm(X,X)

#);
end;

2.3 Functions of Linear Operators

As described at the onset, the primary objective of the authors for pursuing the work of
formalizing the concepts of linear operators is to have the tools for a complete formalization of
the Yoshida-Hille Theorem. The articles on functions of linear operators completed until now still
cover only bounded linear operators.

For example, the following defines a geometric sequence of an element z in Banach_AlgebraX .
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definition
let X be Banach_Algebra;
let z be Element of X;
func z GeoSeq -> sequence of X means

:: LOPBAN_3:def 13
it.0 = 1.X & for n be Element of NAT holds it.(n+1) = it.n * z;

end;

definition
let X be Banach_Algebra;
let z be Element of X, n be Element of NAT;
func z #N n -> Element of X equals

:: LOPBAN_3:def 14
z GeoSeq.n;

end;

theorem :: LOPBAN_3:44
for X be Banach_Algebra
for z be Element of X holds

z #N 0 = 1.X;

Also, the following is a formalization of the Neumann Theorem which discusses the suffi-
cient conditions for elements of Banach_AlgebraX to be reversible in multiplication.

theorem :: LOPBAN_3:45
for X be Banach_Algebra
for z be Element of X holds
||.z.|| < 1 implies z GeoSeq is summable norm_summable;

theorem :: LOPBAN_3:46
for X be Banach_Algebra
for x be Point of X

st ||.1.X - x .|| < 1
holds ( (1.X - x) GeoSeq is summable
& (1.X - x) GeoSeq is norm_summable);

theorem :: LOPBAN_3:47
for X be Banach_Algebra
for x be Point of X

st ||.1.X - x .|| < 1
holds x is invertible & x" = Sum ((1.X - x) GeoSeq );

We have also formalized the concept of exponential functions for elements of Banach_AlgebraX
as shown below.
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definition
let X be Banach_Algebra;
func exp_ X -> Function of the carrier of X, the carrier of X means
:: LOPBAN_4:def 10
for z being Element of X holds it.z=Sum(z ExpSeq);

end;

definition let X,z;
func exp z -> Element of X equals

:: LOPBAN_4:def 11
(exp_ X).z;

end;

theorem :: LOPBAN_4:34
for z holds exp(z)=Sum(z ExpSeq);

theorem :: LOPBAN_4:35
for z1,z2 st z1,z2 are_commutative holds

exp(z1+z2)=exp(z1) *exp(z2)
&exp(z2+z1)=exp(z2) *exp(z1)
&exp(z1+z2)=exp(z2+z1)
&exp(z1),exp(z2) are_commutative;

theorem :: LOPBAN_4:36
for z1,z2 st z1,z2 are_commutative holds
z1* exp(z2)=exp(z2)*z1;

theorem :: LOPBAN_4:37
exp(0.X) = 1.X;

theorem :: LOPBAN_4:38
exp(z)*exp(-z)= 1.X & exp(-z)*exp(z)= 1.X;

theorem :: LOPBAN_4:39
exp(z) is invertible & (exp(z))" = exp(-z)

&
exp(-z) is invertible & (exp(-z))" = exp(z);

theorem :: LOPBAN_4:40
for z for s,t be Real holds s*z,t*z are_commutative;

theorem :: LOPBAN_4:41
for z for s,t be Real holds
exp(s*z)*exp(t*z) = exp((s+t)*z) &
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exp(t*z)*exp(s*z) = exp((t+s)*z) &
exp((s+t)*z) = exp((t+s)*z) &
exp(s*z),exp(t*z) are_commutative;

3. Conclusion

The primary objective of this work will be to completely formalize the materials of the
Yoshida-Hille C0 semi-group theorem. However, the theorems concerning linear operators alone
compose a vast collection and will require a substantial amount of time to formalize. This work
of collecting and formalizing the various facts and results concerning linear operators, which
are applied in not only engineering and science, but in numerous fields, will be essential in
developing the Mizar library and will form the backbone of our future work.
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