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Abstract – In this paper, we describe results of the formalization in Mizar of an extension of the Go-
board Theorem called the Fashoda Meet Theorem [4]. This theorem states that the graphs of two
continuous functions which take values in the Euclidean plane always have at least one common
point if these functions satisfy certain conditions.
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1. Introduction

There are many fundamental and well-known theorems in every branch of mathematics. In
general topology, especially in topology of two-dimensional Euclidean space, the Jordan Curve
Theorem is a one such theorem. At the beginning of the 1990s, members of the Association
of Mizar Users (SUM)1 from Poland and Japan decided to formalize the proof of it in Mizar.
After some research and discussion, leaders of SUM chose to formalize the proof presented by
Takeuchi and Nakamura ([1]) because it depended only on elementary facts of general topology.
The main step of this proof was based on the Go-board2 Theorem.

The first steps of this formalization, i.e., topological preliminaries, were done by Naka-
mura and Darmochwał (see for instance [2]) during Darmochwał’s stay at Shinshu University3 in
Nagano in 1991. I had the pleasure to continue these works with Professor Yatsuka Nakamura
in 1992. Unfortunately, we only had time to formalize the Go-board notation and the Go-board
Theorem for a special polygonal arc on a Go-board ([3, Theorem 1]) and a special polygonal
arc4 ([3, Theorem 8]). Further collaboration among members of SUM on the formalization of
the Jordan Curve Theorem made it possible to prove many interesting properties of curves5

and functions which take values in the Euclidean plane. During this time it was observed that
the Go-board Theorem could either be generalized or reformulated and then generalized. In

1 In Polish: Stowarzyszenie Użytkowników Mizara.
2 The terminology of a Go-board was introduced by T. Shibata in 1980. Unfortunately the author could not translate

the title of his paper from Japanese into English (see the references in [1]).
3 Agata Darmochwał visited the Kiso Laboratory of the Department of Information Engineering, Faculty of Engi-

neering.
4 Definition 1.2 and Remark 1.13 in [1] or Definition 1 in this article.
5 The word ”curve” in the formalization is used to mean the graph of a curve.
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the first case, special polygonal arcs are first substituted by arcs ([4, Theorem 62]) and then by
paths ([11, Theorem 4]).

The reformulation of the Go-board Theorem in the language of continuous functions was
called the Fashoda Meet Theorem and was done by Nakamura in 1998 ([4]). He continued this
work in his papers from the beginning of this century – see [5] for the Outside Fashoda Meet
Theorem, [6], [8], [9] for the Fashoda Meet Theorem for a circle and a square, and the joint
work with Trybulec [10] for a rectangle (the Fashoda Fashoda Meet Theorem). The recent and
the most general result of the formalization of the Fashoda Meet Theorem and the Go-board
Theorem was obtained by Nakamura, Trybulec, and Korniłowicz in 2005 ([11]).

In this article I would like to briefly review the most important variants of the Fashoda Meet
Theorem which can be found in the Mizar Mathematical Library (MML) and which have been
published in Formalized Mathematics (a computer assisted approach). This means that I am
not going to discuss all variants of this theorem that have been included to the MML since 1998,
because there are 55 different variants in [4] – [11].

This paper is divided into three main parts. In the first part, we describe the Go-board
Theorem because it is a predecessor of the Fashoda Meet Theorem. In the next section, we
discuss the Fashoda Meet Theorem, its variants, and generalizations. Finally, in the appendix,
we present selected theorems from the MML6 to illustrate the formalization.

Although the same notion is used for an open interval and a point of the Euclidean plane,
I think it will not cause confusion. Also, a circle, a square, and a rectangle are plane figures for
us, so they are neither simple closed curves nor the graphs of simple closed curves. This point
of view distinguishes our article from the formalization, although we follow the terminology of [4]
– [11].

2. The Go-board Theorem

In this section we want to keep our attention sharply focused on the Go-board Theorem
because it is a predecessor of the Fashoda Meet Theorem. We would also like to look for a way
of reformulating this theorem in the language of continuous functions.

Throughout this section, lower case letters denote points of the Euclidean plane and
L(p,q) denotes the line segment joining points p and q, i.e., the following set

L(p,q) := {(x,y) : (x,y) = (1−λ)p+λq,λ ∈ [0,1]}.

For the convenience of the reader we repeat the definition of a special polygonal arc (see
e.g., [1, Definition 1.2] and [2] for the formalization in Mizar), thus making our exposition self-
contained.

Definition 1. Let p,q be points of the Euclidean plane and P be a subset of the plane. P is said
to be a special polygonal arc joining points p and q if there exists a finite sequence of distinct

6 To be precise, we select theorems neither from the original Mizar articles nor from articles which have been
published in Formalized Mathematics, but only from abstract files (see the distribution of the Mizar system
http://mizar.org).
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points of the plane (p1, . . . , pn) such that n is no smaller than 2, and

(1) p1 = p and pn = q,

(2) P =
n−1[

i=1

L(pi, pi+1),

(3) L(pi, pi+1)∩L(pi+1, pi+2) = {pi+1} for all i ∈ 1,n−2,

(4) L(pi, pi+1)∩L(p j, p j+1) = /0 for all i, j ∈ 1,n−1 and |i− j|> 1,

(5) (pi)x = (pi+1)x or (pi)y = (pi+1)y for all i ∈ 1,n−1,

where px (respectively py) denotes the first (respectively the second) coordinate of a point p.

One can see that a special polygonal arc joining two points of the plane can be regarded as
the set of values of a piecewise-linear, continuous, and 1-1 function which fulfills some other
conditions. This is also the first point at which it is possible to think about a generalization and/or
reformulation of the Go-board Theorem.

Using the concept of a special polygonal arc, the following result was proved (see [1,
Theorem 1.18] or [3, Theorem 8]):

Theorem 1 (Go-board Theorem). Let p,q,r,s be points of the Euclidean plane, P be a special
polygonal arc joining points p and q, and Q be a special polygonal arc joining points r and s. If

ax ≥ px∧ax ≤ qx∧ay ≥ ry∧ay ≤ sy for all a ∈ P∪Q,

then P∩Q 6= /0.

Since there are no Go-boards in the formulation of Theorem 1 it should be explained why it
is called the Go-board Theorem. The reason is very simple. The proof in [1] and also the for-
malization in [3] are based on the basic version of the Go-board Theorem ([1, Theorem 1.16],
[3, Theorem 1]). In both of the cases it is necessary to introduce the Go-boards and special
polygonal arcs on a Go-board.

As we mentioned in the introduction, the Go-board Theorem was extended by relaxing its
assumptions. The first step was done by replacing a special polygonal arc with an arc. In this
step, although maybe not explicitly, the language was also changed. Even though an arc is still
considered a subset of the Euclidean plane, it is also the set of values of a homeomorphism
satisfying the following conditions:

– the domain of it is equal to the closed unit interval,
– the endpoints of the graph of it are points joined by the arc.

Here, the notation of continuous functions is used for the first time. I believe it is the most
important reason for talking about the Go-board Theorem only in the language of continuous
functions and for changing the name of it to the Fashoda Meet Theorem.

It is natural to consider the next possible way of relaxing the assumptions of the theorem.
The answer is easy to see. One can replace a homeomorphism by a continuous function with-
out changing other conditions7 and this variant of the Go-board Theorem was been proved by
Nakamura, Trybulec, and Korniłowicz ([11, Theorem 4]).

7 Such a function is called a path (see [12] and [13] for the formalization in Mizar).
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3. The Fashoda Meet Theorem and its Generalizations

In this section we formulate the Fashoda Meet Theorem and investigate possible variants
of it. We already observed in the previous section that a reformulation of the Go-board Theorem
can be done in the language of continuous functions. The first version of this reformulation
is called the Fashoda Meet Theorem and it was proved by Nakamura ([4, Theorem 65]) at
the same time as the formalization of the first extension of the Go-board Theorem. Nakamura
obtained the following result:

Theorem 2 (Fashoda Meet Theorem). Let f ,g : [0,1]→ R2 be continuous and 1-1 functions,
a,b,c,d be real numbers such that ( f (0))x = a, ( f (1))x = b, (g(0))y = c, (g(1))y = d and

( f (r))x,(g(r))x ∈ [a,b]∧ ( f (r))y,(g(r))y ∈ [c,d] for all r ∈ [0,1].

Then f ([0,1])∩g([0,1]) 6= /0.

In the next article by Nakamura relating to the Fashoda Meet Theorem he proves the so
called Outside Fashoda Meet Theorem ([5]). In the summary of this article, the author explains
in a demonstrative way the theorem that ”... if Britain and France intended to set the courses of
ships to the opposite side of Africa, they must also meet.”. But, we can formulate the Outside
Fashoda Meet Theorem in the following way ([5, Theorem 548]):

Theorem 3 (Outside Fashoda Meet Theorem). Let f ,g : [0,1] → R2 be continuous and 1-1
functions, a,b,c,d be real numbers. Suppose that

(1) a < b∧ c < d,

(2) ( f (0))x = a∧ ( f (1))x = b∧ ( f (0))y,( f (1))y ∈ [c,d],
(3) (g(0))y = c∧ (g(1))y = d∧ (g(0))x,(g(1))x ∈ [a,b],
(4) there is no r ∈ [0,1] such that ( f (r))x ∈ (a,b)∧ ( f (r))y ∈ (c,d),
(5) there is no r ∈ [0,1] such that (g(r))x ∈ (a,b)∧ (g(r))y ∈ (c,d).

Then f ([0,1])∩g([0,1]) 6= /0.

We can also find another version of this theorem with small modifications of its assumptions in
[8, Theorem 14].

The next work of extending the Fashoda Meet Theorem was done in two complementary
directions. In the first approach, the graphs of special simple closed curves in the Euclidean
plane, in which the endpoints of the graphs of functions should belong, are considered and in
the second, the assumptions are relaxed. The preliminary results of the first method were proved
by Nakamura [6] in 2001. In this article the author defines homeomorphism from the Euclidean
plane to itself, which maps a square to a circle9. Using this homeomorphism he proved that
boundaries of the unit circle10 and the square with vertices at points (−1,1),(−1,1),(1,1),

8 The proof is based on an earlier version of this theorem ([5, Theorem 52]) where a = c =−1 and b = d = 1.
9 In the article and in the formalization both of these objects are simple closed curves.

10 In the latter part of the article we will use the terminology the 1-dimensional sphere for the boundary of the unit
circle.
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(1,1) are simple closed curves ([6, Theorems 35 and 36]). Finally, the following Fashoda Meet
Theorem for the unit circle was formulated and proved ([6, Theorem 55]):

Theorem 4. Let f ,g : [0,1]→ R2 be continuous and 1-1 functions. If

(1) f ([0,1])∪g([0,1])⊂ {r ∈ R2 : ‖r‖ ≤ 1},
(2) f (0) ∈ {r ∈ R2 : ‖r‖= 1∧ (r)y ≥ (r)x∧ (r)y ≤−(r)x},
(3) f (1) ∈ {r ∈ R2 : ‖r‖= 1∧ (r)y ≤ (r)x∧ (r)y ≥−(r)x},
(4) g(0) ∈ {r ∈ R2 : ‖r‖= 1∧ (r)y ≤ (r)x∧ (r)y ≤−(r)x},
(5) g(1) ∈ {r ∈ R2 : ‖r‖= 1∧ (r)y ≥ (r)x∧ (r)y ≥−(r)x}.

Then f ([0,1])∩g([0,1]) 6= /0.

We see that one endpoint of the graph of the first function ought to lie on the west arc of the 1-
dimensional sphere and the other on the east arc and we have a similar situation for the second
function and the north and south arcs. All other variants of this theorem appear in subsequent
articles by Nakamura ([8, Theorem 16], [9, Theorems 23 and 24]). The Outside Fashoda Meet
Theorem for the unit circle was also proved one year later ([8, Theorems 17 – 2011]). Here, let us
mention that Theorems 17 and 18 in [8] are exactly analogous to our Theorem 4, and Theorem
19 is a special case of Theorem 17 (the endpoints of the graphs of both functions are the points
of intersection of the axes and the 1-dimensional sphere). From among these theorems, the
most general variant of the Outside Fashoda Meet Theorem for the unit circle can be formulated
as follows ([8, Theorem 20]):

Theorem 5. Let p1, p2, p3, p4 be points of the Euclidean plane. Assume that the following con-
ditions hold

(1) p1, p2, p3, p4 ∈ {r ∈ R2 : ‖r‖= 1},

and there exists a homeomorphism h from R2 onto R2 that

(2) h({r : ‖r‖ ≥ 1})⊂ {r : ‖r‖ ≥ 1}∧
h(p1) = (−1,0)∧h(p2) = (0,1)∧h(p3) = (1,0)∧h(p4) = (0,−1).

If f ,g : [0,1]→R2 are continuous and 1-1 functions such that f (0)= p1, f (1)= p3,g(0)=
p4 and g(1) = p2 and f ([0,1])∪g([0,1])⊂ {r ∈ R2 : ‖r‖ ≥ 1}, then f ([0,1])∩g([0,1]) 6= /0.

The next generalization of this theorem for special simple closed curves was done by
Nakamura in 2002 ([8, §5. General Fashoda Theorems]). The author, using his earlier works
on the Fan morphisms ([7]), discusses the connection between the order of points on the 1-
dimensional sphere and their coordinates. These considerations allowed the author to prove

11 Condition (1) in Theorem 4 was replaced in these theorems by

f ([0,1])∪g([0,1])⊂ {r ∈ R2 : ‖r‖ ≥ 1}.
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the Fashoda Meet Theorem for the unit circle assuming that the endpoints of the graph of the
first function lie on two distinct but complementary arcs of the 1-dimensional sphere, where the
endpoints are the endpoints of the graph of the second function ([8, Theorems 71 and 72]). The
Outside Fashoda Meet Theorem for the unit circle with analogous assumptions was also proved
in this article ([8, Theorems 73 and 74]).

The next step in this work was done in [9] one year later. The Fashoda Meet Theorem for
the square with vertices at points (−1,−1),(−1,1),(1,−1) and (1,1) was proved ([9, Theorem
89]) under the assumption that the endpoints of the graph of the first function lie on the boundary
of the square between the endpoints of the graph of the second one. This theorem was proved
by Nakamura and Trybulec for a general rectangle in the Euclidean plane [10] in 2005. The
authors enumerated and proved the Fashoda Meet Theorem for all possibilities of orders of
points, i.e., the endpoints of the graphs of both functions, on the boundary of a rectangle. It is
interesting to note that we have 35 such possibilities12.

Since 2001, there was no progress in generalizations (i.e., relaxing of the assumptions) of
the Fashoda Meet Theorem until finally in 2005 a relaxing of its assumptions was done in [11,
Theorem 5]. The authors obtained:

Theorem 6. Let f ,g : [0,1]→ R2 be continuous functions, a,b,c,d be real numbers. Assume
that ( f (0))x = a, ( f (1))x = b, (g(0))y = c, (g(1))y = d and for all r ∈ [0,1]

( f (r))x,(g(r))x ∈ [a,b]∧ ( f (r))y,(g(r))y ∈ [c,d],

Then f ([0,1])∩g([0,1]) 6= /0.

Notice that it is not necessary to assume that both functions are 1-1 functions.
We close this section with one remark about further possible work on the Fashoda Meet

Theorem in Mizar. The Outside Fashoda Meet Theorem for continuous functions, i.e., the coun-
terpart of Theorem 6, should be formalized as soon as possible, but I believe this can be done
by people who want to study how the Mizar system and the formalization in Mizar work.

4. Conclusion

The complete proof of the Jordan Curve Theorem in Mizar was formalized by A. Korniłow-
icz in 2005. Unfortunately, he did not use the Go-board Theorem or the Fashoda Meet Theorem
in his proof, so one could say that the works concerning the Fashoda Meet Theorem were un-
necessary, but all of these efforts contributed significantly to the development of Mizar and the
MML and encouraged cooperation between members of SUM in Poland and Japan.

Finally, I would like to thank Professor Yatsuka Nakamura of Shinshu University for the
invitation, hospitality, and successful collaboration during the formalization of the Go-board The-
orem in Nagano in 1992.

12 In textbooks, we will see only one theorem because the following sentence is usually used “Without loss of
generality we can assume ...”.
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A The Fashoda Meet Theorem in Mizar

In this appendix we would like to show how the formalization of the Fashoda Meet Theo-
rem looks in Mizar.

The Fashoda Meet Theorem ([4, JGRAPH_1.abs]) and the Outside Fashoda Meet Theo-
rem ([5, JGRAPH_2.abs]):

theorem :: JGRAPH_1:65
for f,g being Function of I[01],TOP-REAL 2,
a,b,c,d being real number,
O,I being Point of I[01] st O=0 & I=1 &
f is continuous one-to-one & g is continuous one-to-one &
(f.O)‘1=a & (f.I)‘1=b & (g.O)‘2=c & (g.I)‘2=d &
(for r being Point of I[01] holds
a <=(f.r)‘1 & (f.r)‘1<=b & a <=(g.r)‘1 & (g.r)‘1<=b &
c <=(f.r)‘2 & (f.r)‘2<=d & c <=(g.r)‘2 & (g.r)‘2<=d)

holds rng f meets rng g;

theorem :: JGRAPH_2:55
for f,g being Function of I[01],TOP-REAL 2,
a,b,c,d being real number,
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O,I being Point of I[01] st O=0 & I=1 &
f is continuous one-to-one & g is continuous one-to-one &
(f.O)‘1=a & (f.I)‘1=b &
c <=(f.O)‘2 & (f.O)‘2<=d & c <=(f.I)‘2 & (f.I)‘2<=d &
(g.O)‘2=c & (g.I)‘2=d &
a<=(g.O)‘1 & (g.O)‘1<=b & a<=(g.I)‘1 & (g.I)‘1<=b &
a < b & c < d &
not (ex r being Point of I[01] st
a<(f.r)‘1 & (f.r)‘1<b & c <(f.r)‘2 & (f.r)‘2<d)&

not (ex r being Point of I[01] st
a<(g.r)‘1 & (g.r)‘1<b & c <(g.r)‘2 & (g.r)‘2<d)

holds rng f meets rng g;

The general Fashoda Meet Theorem from [11, JGRAPH_8.abs]:

theorem :: JGRAPH_8:5
for f,g being continuous Function of I[01],TOP-REAL 2,
a,b,c,d being real number,
O,I being Point of I[01] st O=0 & I=1 &
(f.O)‘1=a & (f.I)‘1=b & (g.O)‘2=c & (g.I)‘2=d &
(for r being Point of I[01] holds
a <=(f.r)‘1 & (f.r)‘1<=b & a <=(g.r)‘1 & (g.r)‘1<=b &
c <=(f.r)‘2 & (f.r)‘2<=d & c <=(g.r)‘2 & (g.r)‘2<=d)

holds rng f meets rng g;

Explanation of the symbols:
for/ex - for every/there exists

(the universal and existential quantifiers),
not/& - a negation/a conjunction,
I[01] - the closed interval [0,1] in the Euclidean plane

(considered as a topological space),
TOP-REAL 2 - the Euclidean plane with the Euclid metric,
’1 (resp. ’2) - the first (resp. the second) coordinate of a point,

<= - less than or equal to (≤),
rng - the set of values of a function,

X meets Y - the sets X and Y have a non empty intersection.


