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Abstract - The article describes features of sequences and operations on 
sequences of points on the plane.  All concepts are presented based on their 
definitions formalised in Mizar [2].  The article also characterises their 
implementation in the Jordan Curve Theorem (described in detail in [1]).  
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1. Preliminaries 
 

As a plane we understand  topological space R2 with Euclid metric 

ρ((x1,y1),(x2,y2)) = 2
21

2
21 )()( yyxx −+− , where (x1,y1) and (x2,y2) are points on the plane.  

A sequence of points on the plane is a sequence of which all elements belong to R2.  If 
p = (x,y) is a point which belongs to R2 then by px we will denote the abscissa of this point, 
i.e., x, whereas by py the ordinate of this point, i.e., y. 
 
In the remainder of the article we assume that a = (a1, a2, ..., an) is a finite sequence of 
points on the plane unless stated otherwise. 
 
Definition 1-1 
Let b, c be sequences of diverse variables in value and increasing created from all 
elements accordingly of set  {(a1)x, (a2)x, ..., (an)x} and set  {(a1)y, (a2)y, ..., (an)y}.  
Goboard marked by sequence a is a matrix GoB(a) of dimension n × n, such that 
[Gob(a)]ij = (bi,cj). 
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Definition 1-2 
Let p1=(x1,y1) and p2=(x2,y2) be points of R2.  A segment marked by these points is called 
a set of points L(p1,p2) = {(x,y): (x,y) = (1-λ)p1 + λp2, 0 ≤ λ ≤ 1}. 
 
Definition 1-3 
Let i be a natural number such that 1 ≤ i ≤ n-1.  The segment marked by the i-th element 
of the sequence a we call a set of points LSeg(a,i) = L(ai,ai+1).  If i > n-1, it is assumed that 
LSeg(a,i) = φ. 
 
Definition 1-4 
A polygonal path marked by sequence a we call set L~a created out of all points of 
segments marked by this sequence, i.e., U

11

),(~
−≤≤

=
ni

iLL aa . 

 
 

2. Features of Sequences 
 
Definition 2-1 
Sequence a is special (see [2]) if the abscissa or ordinate of neighbouring elements of this 
sequence are equal , i.e., ∀i ∈ N 1 ≤ i ≤ n-1 (ai)x = (ai+1)x lub (ai)y = (ai+1)y. 
 

 

Figure 1.  Special sequence  

 
 

Definition 2-2 
Sequence a is unfolded (see [2]) if the only common point of two segments is marked by a 
point which is the end of the first and the beginning of the second of these segments, i.e., 
∀i ∈ N 1 ≤ i ≤ n-2 ⇒ LSeg(a,i) ∩ LSeg(a,i+1) = {ai+1}. 
 
Definition 2-3 
Sequence a is circular (see [5]) if the first and the last element of this sequence are equal. 

a1 a2

a3

a4 a5

a6
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Definition 2-4 
Sequence a is a simple non-closed curve (see [2]) if every two segments marked by 
non-neighbouring elements of this sequence are separate, i.e.,  
∀i,j ∈ N i+1<j ⇒ LSeg(a,i) ∩ LSeg(a,j) = φ. 
 
Definition 2-5 
Sequence a is a simple closed curve (see [6]) if   
∀i,j ∈ N i+1<j ∧ (i>1 ∧ j < n ∨ j<n-1) ⇒ LSeg(a,i) ∩ LSeg(a,j) = φ.  
 
The difference between a simple non-closed curve and a simple closed curve is such that 
in the case of a simple closed curve it is not required that segments marked by the first and 
the last element of the sequence are disjoint. 
 
Definition 2-6 
Let there be a given matrix  [G]s × t with elements belonging to R2.  Sequence a is  
sequence on the matrix G if the following condition is fulfilled:  
ak = gij ∧ ak+1 = gi’,j’ ⇒ |i-i’|+|j-j’|=1, where 1 ≤ k ≤ n-1, 1 ≤ i, i’ ≤ s, 1 ≤ j, j’ ≤ t.  
 
Definition 2-7 
Sequence a is standard (see [6]) if it is a sequence on the matrix marked by this sequence, 
i.e., a sequence on the matrix GoB(a). 
 
A finite sequence of points on the plane which is of diverse value, unfolded, simple 
non-closed curve and special is called S-Seq (see [2]).  Sequence a being S-Seq such 
that a1 = p1 i an = p2, where p1, p2 are points belonging to R2, is called a special sequence 
joining p1,p2 (see [10]). 
 
Definition 2-8 
Let yN-most be the highest value among ordinates of elements of a sequence a, i.e., yN-most = 
max{(a1)y,(a2)y, ...,(an)y}.  Let AN-most be a set of these elements of sequence a, which has 
ordinate equal to yN-most, whereas px-min is an element of this set of smallest abscissa, i.e., 
(px-min)x = min {(ai)x: ai ∈ AN-most}.  Sequence a is clockwise oriented (see [7]) if 
(Rotate(a,px- min))2 ∈ AN-most, (see def. 3-4), i.e., following element of the sequence a after 
the element  px-min  has the same ordinate as element px-min.  
 
 

3.  Operations on Sequences 
 

In the following, we distinguish three types of operations on sequences. 
 

3.1  Modification of sequence in reference to one of its elements 
 
Definition 3-1 
Min(a,x) is the smallest number of the element of sequence a among numbers of these 
elements which are equal to x. 
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Example: 
a = (y,x,y,x,x,z) Min(a,x) = 2 

 
Let x be a point belonging to R2. 
 
Definition 3-2 
Sequence a:-x (see [8]) is a subsequence of sequence a created in such a way that: 
a:-x = (x, ai+1, ...,an), where i = Min(a,x) that ai is the first occurrence of the value  x in 
sequence a. 
 
Definition 3-3 
Sequence a-:x (see [8]) is a subsequence of sequence a  created in such a way that: 
a-:x = (a1, a2, ...,ai-1,x), where i = Min(a,x). 
 
Definition 3-4 
Sequence Rotate(a,x) (see [5]) is a sequence created from sequence a, in such a way that: 
Rotate(a,x) = (x, ai+1, ai+2,...,an,a2,....,ai-1,x), where i = Min(a,x). 
 
Example: 
a = (c,d,e,f,g,x,h,i) Rotate(a,x) = (x,h,i,d,e,f,g,x) 
 
Definition 3-5 
Let x be the value of an element of this sequence.  Sequence a -| x (see  [9]) is a 
sequence which is a cut of sequence a such as that a -| x = (a1, a2, ...,ai-1), where i = 
Min(a,x). 
 
Definition 3-6 
Let x be the value of an element of sequence a.  Sequence a |-- x (see [9]) is a 
subsequence of sequence a created from elements which occur after the first element of 
value x, i.e., 
a |-- x = (ai+1, ..., an), where i = Min(a,x). 
 

3.2  Other operations 
 
Definition 3-7 
Let a = (a1, a2, ..., an-1,an).  The reversed sequence (see [8]) is called sequence  
Rev(a) = (an, an-1, ..., a2,a1). 
 
Definition 3-8 
Sequence mid(a,i,j), where i,j ≤ n, (see [10]) is a subsequence of a sequence a created 
from elements out of numbers from i to j inclusive - in the following manner: 
 
  
  
 

mid(a,i,j) =  
(ai,ai+1,...,ak, ...,aj-1,aj), where  i ≤ j 
(aj,aj-1,...,ak, ...,ai+1,ai) otherwise. 
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Definition 3-9 
Sequence (i,j)-cut a (see [11]) is a subsequence of a sequence a created from elements 
out of numbers from i to j  inclusive - i.e., (i,j)-cut a = (ai, ...,aj).  If i,j > n or i > j it is 
assumed that sequence (i,j)-cut a is an empty set. 
 
Definition 3-10 
Let there be given a finite sequence a = (a1, a2, ...,ai,ai+1, ...,an).  Sequence Ins(a,i,p) (see 
[8]) is a sequence obtained by adding to sequence a a new element p between the i-th and 
i+1st elements, i.e., Ins(a,n,p) = (a1, a2, ...,ai, p, ai+1, ...,an). 
 
Definition 3-11 
Let b = (b1, b2, ..., bm) be a finite sequence.  Sequence a^’b = (a1, a2, ...,an, b2, ..., bm) 
(see [11]). 
 

3.3  Cutting sequences with respect to a point 
 
Definition 3-12 
Let p be a point belonging to R2 so p ∈ L~a.  Index(p,a) (see [10]) is the smallest number 
of the element of the sequence a among numbers of elements of the sequence a marking 
segments to which point p belongs (see Fig. 2).  
 

Let p be a point belonging to R2 such that Index(p,a) = i. 
 

Definition 3-13 
Sequence L_Cut(a,p) (see [10]) is a sequence defined in the following manner: 
 
  
   
 
Definition 3-14 
R_Cut(a,p) (see [10]) is a sequence defined in the following manner: 
 
 
 
Definition 3-15 
Let q be a point belonging to R2 so Index(q,a) = j. B_Cut(a,p,q) (see [10]) is a sequence 
defined in the following manner:  
 
  
  
 
 
 
 
 

L_Cut(a,p) = 

R_Cut(a,p) = 

B_Cut(a,p,q) = 

(p, ai+1..., an) if p ≠ ai+1 

(p, ai+2..., an) jeśli p = ai+1 

(a1, a2, ...,ai, p) if p ≠ a1 

(p) if p = a1. 

R_Cut(L_Cut(a,p),q), if i < j or i = j and point p is before point q 
Rev (R_Cut(L_Cut(a,q),p)) otherwise; 
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Example 
 
 

 
 

Figure 2.  Operation on sequences. 

 
 

4. Implementation 
 

Polygonal paths marked by sequences of points on a plane are implemented for  the 
approximations of curves.  On these approximations the proof of the Jordan Curve 
Theorem is based, in which, at first, this theorem had been proved for the case of polygonal 
path approximations, and then it is used to prove the theorem for the general case (details 
in [1]).  The sequence marking the polygonal path that approximates a curve from the 
outside is called Cage, whereas from the inside - Span.  Formal definitions of these two 
concepts are found in articles MML [3,4].  Sequences marking such polygonal paths are:  
clockwise oriented, standard, special, circular sequence, unfolded, simple closed curve, 
and sequences on the matrix marked by curve (see Fig. 3).  
 

Index(p,a) = 3 

L_Cut(a,p) = (p,a4,a5, ...,a8) 
R_Cut(a,p) = (a1,a2,a3,p) 
B_Cut(a,p,q) = (p,a4,a5,a6,q) 

a1 a2 

a3 a4 

a5 

a6
a7 

a8

p 

q 
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Figure 3.  Polygonal paths marked by elements of sequence Cage and Span. 

 
The enumerated kinds of sequences were also implemented in auxiliary theorems 
connected with the proof of the Jordan Curve Theorem, among others, in [14,15].  Special 
sequences of points on the plane have been used in the proof [1] of the Jordan Curve 
Theorem.  Finally, in Mizar, the Jordan Curve Theorem was formalized in [12]. The original 
Jordan’s Proof is explained in [13].  
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