
dom it = dom f1 /\ dom f2 & for c
being set st c in dom it holds it.c = f1.c + f2.c;
Commutative;

end;
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Abstract - This paper shows codification of normed vector space of functions based on integrable 
functions over a measure space.

1 Introduction

Formalization of theory of function space, normed space, and Hilbert space of real sequences 
l2 were developed and appeared in Mizar library in [1], [2], [3] and [4] respectively. We have discussed 
a space which is formed by integrable partial functions in [11], namely the set of all integrable 
partial functions has a linear space structure and becomes a real linear space by identifying two 
functions which are almost everywhere equal. Function space discussed in the article is based on a 
real valued partial function defined over non-empty set X. It is convenient for considering a function 
defined over various subsets when a measure is introduced in X. One often considers partial functions 
over a subset Y such that X 6= Y and µ(X) = µ(Y ) (where µ is a measure of X). A space of partial 
functions can be enhanced to various spaces such as a normed space or a Banach space. We owed to 
the results of a measure theory and integral formalized in [7], [8],[9] and [10].

2 Algebraic Structure of Partial Functions

One can introduce a linear space structure by defining addition between functions and defining 
multiplication of a scalar to a function. It is straightforward to define addition and scalar 
multiplication to a set of partial functions by defining them point-wise substitution. The 
formalization is done by the following manner:

Cited from Properties of Number-Valued Functions [12].
Definition
let f1,f2 be complex-valued Function;

func f1 + f2 -> Function means
:: VALUED_1:def 1

definition
let f be complex-valued Function, r be complex number;
func r (#) f -> Function means

:: VALUED_1:def 5

dom it = dom f & for c being set st c
in dom it holds it.c = r * f.c;

end;

The facts above show the set of partial functions from X to Real (denoted by PFuncs(X, REAL)
has an algebraic structure. It is called by ”RLSStruct”, namely it has a monoid structure with re-
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spect to addition and has action of scalar multiplication of a real number on PFuncs(X, REAL). The
structure above is formalized below:

definition
let A;
func RLSp_PFunctA -> non empty RLSStruct equals

:: LPSPACE1:def 7
RLSStruct(#PFuncs(A,REAL),
RealPFuncZero A, addpfunc A, multrealpfunc A#);

end;

PFuncs(X, REAL) does not form an additive group because the neutral element cannot 
be defined or the inverse element cannot be uniquely defined. This cause is mainly due to freedom 
of choice of a partial function’s domain. In order to make PFuncs(X, REAL) be a group, we need to 
introduce the following definitions or assumptions to additional constraints to the freedom of domain 
of functions:

1. X to be a measurable set,

2. a measurable function,

3. an integrable function,

4. two functions are almost everywhere equal ,

5. a function is almost everywhere defined on X.

3 Linear Space of Partial Function

Let X, S, M be a non empty set, a sigma field of subsets of X and a sigma measure, 
respectively. Throughout the rest of this paper, a partial function is defined over the measure space 
(X,S,M). The following definitions are to be recalled to construct function spaces.

1. ( LPSPACE1: Def. 10 )
let f, g be elements of PFuncs(X, REAL). if f and g are measurable and ∃N ∈ S stM(N) = 0 and 
f |X\N = g|X\N then we say f and g are almost everywhere equal and denote as fa.e. = gM
a.e. = turns to be an equivalence relation on PFuncs(X, REAL) × PFuncs(X, REAL).
The equivalence class includes f is denoted by a.e-eq-class(f, M)

2. let f be an element of PFuncs(X, REAL). f is called as a defined almost everywhere on X
iff     ∃N ∈ S st M(N) = 0 and domf = X\N

3. ( MESFUNC1: Def. 17 )
let f be an element of PFuncs(X, REAL). f is measurable on A iff
∀r ∈ R, A ∩ Lessdom(f, r) ∈ S. here Lessdom(f, r) = {x ∈ X|f(x) ≤ r}

4. ( MESFUNC5: Def. 16)
Let f be an element of PFuncs(X, ExtREAL). The functor

∫
fdM yielding an element of REAL

is defined as follows: ∫
fdM =

∫ +

max+(f)dM −
∫ +

max−(f)dM

5. ( MESFUNC5: Def. 17) We say that f is integrable on M if and only if:
There exists an element A of S such that A = dom f and f is measurable on A and∫ +

max+(f)dM < +∞ and

∫ +

max−(f)dM < +∞

It is possible to construct a linear space from all the sets of partial functions which are 
defined almost everywhere on X, say a.e.Funcs(X, REAL). One can obtain linear space structure 
into a.e.Funcs(X, REAL) by taking the quotient of the equivalence relation of a.e.= . The same way is 
applied to the all the set of integrable functions and that would be much of interest.
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4 Lp Space of Partial Function

let p be a positive real number and f be an element of PFuncs(X, REAL). f is said to be an
element of Lp iff
f is defined as almost everywhere defined over X, is a measurable function and |f |p is integrable.
The set of all the pth integrable function is denoted by Lp Functions(M, p). For the case of p = 1,
L1 Functions Mis used as in [11] instead of Lp Functions(M, 1).

definition
let X be non empty set, S be SigmaField of X, M be sigma_Measure of S,
p be positive Real ;
func Lp_Functions (M,p) -> non empty Subset of RLSp_PFunct X
equals
:defLpF:
{ f where f is PartFunc of X,REAL : ex Ef be Element of S st M.(Ef‘)=0 &
dom f = Ef & f is_measurable_on Ef & (abs f) to_power p is_integrable_on M };

end;

Lp Functions(M, p) is not yet a linear space. However the residual set forms a linear space 
and internal and external operations are naturally defined.

Theorem 1 A relation a.e.= with respect to M induces an equivalence relation
on elements of Lp Functions(M, p) and the equivalence classes have a linear space structure. Because 
one can determine an inverse of f of Lp Functions(M, p) uniquely up to almost everywhere equal. 
Lp Functions(M, p)/ ∼ is denoted by Pre-Lp-Space(M, p).

Pre-Lp-Space (M,p) is presented by the Mizar system as stated below:

definition
let X be non empty set, S be SigmaField of X, M be sigma_Measure of S,
k be positive Real;
func Pre-Lp-Space (M,k) -> strict Abelian add-associative right_zeroed

right_complementable RealLinearSpace-like
(non empty RLSStruct) means :VSPDef6X:

the carrier of it = CosetSet (M,k) &
the addF of it = addCoset (M,k) &
0.it = zeroCoset (M,k) &
the Mult of it = lmultCoset (M,k);

5 Linear Normed Space of Partial Function

A norm is defined in Pre-Lp-Space(M, p) by taking an integral of a point of the space. The
definition is coded as the following:

Definition 1 let x be a point of Lp Functions(M, p). A norm of the space Pre-Lp-Space(M, p) is
defined by Lp-Norm(M, k). Lp-Norm(M, k)(x) = (

∫
| f |p dM)1/p (where f is an element of the class

of x). Lp-Norm(M, k)(x) can be expressed by ‖x‖k in a mathematical context.

Lp-Norm(M, k) satisfies the norm conditions, however it is required some technique to prove transi-
tivity of the norm.

Theorem 2 (Hölder’s inequality)
Let m,n ∈ R such that 1 ≤ m < ∞ and 1

m + 1
n = 1 and if f ∈ Lp Functions(M, m)

and g ∈ Lp Functions(M, n) then fg ∈ Lp Functions(M, 1) and
‖f · g‖1 ≤ ‖f‖m · ‖g‖n hold.

(Codified Hölder’s inequality.)
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for X,S,M for f,g
for m,n be positive Real st 1/m +1/n =1 &
f in Lp_Functions (M,m) & g in Lp_Functions (M,n) holds
f(#)g in L1_Functions M & f(#)g is_integrable_on M

theorem Th001:
for X,S,M for f,g
for m,n be positive Real st 1/m +1/n =1 &
f in Lp_Functions (M,m) & g in Lp_Functions (M,n) holds
ex r1 be Real st r1 = Integral(M,(abs f) to_power m) &
ex r2 be Real st r2 = Integral(M,(abs g) to_power n) &
Integral(M,abs( f(#)g) ) <= r1 to_power (1/m) * r2 to_power (1/n)

Theorem 3 (Minkowski’s inequality)
Suppose 1 ≤ p < ∞ and if f ∈ Lp Functions(M, p)
and g ∈ Lp Functions(M, p).
Then f + g ∈ Lp Functions(M, p) and ‖f + g‖p ≤ ‖f‖p + ‖g‖p hold.

(Codified Minkowski’s inequality):
::Minkowski
theorem Th002X:
for X,S,M for f,g
for m be positive Real
for r1,r2,r3 be Element of REAL st
1 <= m &
f in Lp_Functions(M,m) & g in Lp_Functions(M,m) &
r1 = Integral(M,(abs f) to_power m) &
r2 = Integral(M,(abs g) to_power m) &
r3 = Integral(M,(abs (f+g)) to_power m) holds
r3 to_power (1/m) <= r1 to_power (1/m) + r2 to_power (1/m)

We introduce a norm structure into Pre-Lp-Space(M,k) and call it Lp-Space(M,k). Due to the
above theorems, it is verified that Lp-Space(M,k) is a real norm space. The space Lp-Space(M,k) is
complete with respect to a metric induced from its norm. The completeness is defined by a Cauchy
sequence of point of the space is convergent.

Lemma 1 Let X be a real norm space, Sq be sequence of X, Sq0 be a point of X, R1 be a real sequence,
and N be increasing sequence of N. Suppose that Sq is a Cauchy sequence with respect to the norm of
X and that for any i ∈ N R1(i) = ‖Sq0−Sq.(N(i))‖ and R1 is convergent and lim

x→∞
R1(x) = 0. Then

Sq is convergent and lim
i→∞

Sq(i) = Sq0 and ‖Sq(i) − Sq0‖ is convergent and lim
i→∞

‖Sq(i) − Sq0‖ = 0

holds.

Lemma 2 : Let X and Sq be the same as the above lemma. Let Sq0 be a point of X. Suppose
‖Sq − Sq0‖ is convergent and lim

i→∞
‖Sq(i)− Sq0‖ = 0 then Sq is convergent and lim

i→∞
Sq(i) = Sq0

Lemma 3 : Let X and Sq be the same as the above lemma. Suppose Sq is Cauchy sequence by the
norm of X then there exists an increasing sequence N of N satisfies ‖Sq(j)−Sq(N(i))‖ < 2−i for any
two elements of N such that j ≥ N(i) holds.

Lemma 4 : (HOLDER1 : 10) Let p ∈ Nandp > 0 and a,ap are real sequences. Suppose a is
convergent, ai ≥ 0 and api = ap

i . Then ap is convergent and lim
i→∞

api = lim
i→∞

ap
i holds.
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Theorem 4 Monotone Convergence Theorem appeared in MESFUNC9:52
Let E be an non-empty set, {fi} be a sequence of functions such that fi is measurable, nonnegative
and monotone increasing. Then the following holds.

lim
i→∞

fi = f∫
E

lim
i→∞

fidM = lim
i→∞

∫
E

fidM

Theorem 5 : Let k ∈ R and 1 ≤ k < ∞. Let Sq be sequence of Lp-Space(M,k).
Then Sq is a Cauchy sequence w.r.t the norm of Lp-Space(M, k) implies that Sq is convergent to an
element of Lp-Space(M, k).

Sketch of Proof Assume that 1 ≤ k < ∞ and {Sqn} is a Cauchy sequence in Lp-Space
(M,k). There is a subsequence {SqNi} for some renumbering N1 < N2 < · · · < Ni, such that

‖Sq(Ni+1)− Sq(Ni)‖ < 2−i (i = 1, 2, 3, · · · ) (1)

by Lemma 3. We can take a sequence {F1i} such that F1i ∈ Lp Functions(M,p) and F1i ∈ Sq(Ni).
We put

Gi = |F10|+
i∑

j=1

|F1j+1 − F1j |. (2)

Gi ∈ LpFunctions(M,p) holds for i ∈ N. Gi is non-negative and Gi ≤ Gj for i ≤ j.
The common domain of Gi is denoted by E0. Namely

E0 =
∞⋂

i=1

domGi

and its complement Ē0 is measure zero. Gi(x) is point-wise convergent on E0, then we put

lim
i→∞

Gi = G

Now consider the following integral of (2). We obtain

(∫
E0

(Gi)pdM

)1/k

=

∫
E0

(
|F10|+

i∑
j=1

|F1j+1 − F1j |
)k

dM

1/k

≤
(∫

E0

|F10|kdM
)1/k

+
i∑

j=1

(∫
E0

|F1j+1 − F1j |kdM

)1/k

by Theorem 3

≤ ‖Sq(N1)‖+
i∑

j=1

‖Sq(Nj+1 − Sq(Nj)‖ ≤ ‖Sq(N1)‖ + 1 by ( 1).

Now apply Theorem 4 to I(n) =
∫

E0
Gp

ndM .∫
E0

GkdM =
∫

E0

lim
i→∞

Gk
i dM = lim

i→∞

∫
E0

Gk
i dM

= lim
i→∞

‖Gi‖k ≤ (‖Sq(N1)‖+ 1)k

≤
((∫

E0

|F10|kdM
)1/k

+ 1
)k

< +∞

Therefore G ∈ Lp Functions(M,p). Since F1i|E0 is point-wise convergent, we name F is lim
i→∞

F1i|E0.
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Evaluate
∫

E0
|F |kdM then we know F ∈ Lp Functions (M,p). By translating property of F1i to

{Sqn}, we can conclude {Sqn} is convergent. �

A normed space is Banach space when it is complete. For the sake of the previous theorem, the 
next theorem holds.

Theorem 6 : Let k ∈ R and 1 ≤ k < ∞. Lp-Space(M, k) is Banach space.

6 Conclusion

As we have seen formal proofs regarding definitions and properties of Lp space which is 
rather an abstract object, a naive object namely a partial function has played an important role to 
formalize Lp space from the beginning. Our result would support our approach to formalize function 
space by using partial functions. It is remained to formalize the case when a function is essentially 
bounded namely the case of L∞.
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